Math, asked by Shiksha04, 1 year ago

If x =5-√3/5+√3. and y= 5+√3/5-√3,show that x² - y ²= -10√3/11

Answers

Answered by jaya1012
1
Hiii. .....friend

The answer is here,

 =  >  \: x =  \frac{5 -  \sqrt{3} }{5 +  \sqrt{ 3} }

 =  >  \:  \frac{5 -  \sqrt{3} }{5 +  \sqrt{3} }  \times  \frac{5 -  \sqrt{3} }{5 -  \sqrt{3} }


 =  >  \:  \frac{25  + ( { \sqrt{3})}^{2}  - 10 \sqrt{3} }{ {5}^{2}  -  { \sqrt{3} }^{2} }

 =  >  \:  \frac{28 - 10 \sqrt{3} }{16}

y =  \frac{5 +  \sqrt{3} }{5 -  \sqrt{3} }

 =  >  \:  \frac{5 +  \sqrt{3} }{5 -  \sqrt{3} }  \times  \frac{5 +  \sqrt{3} }{5 +  \sqrt{3} }

 =  >  \: \frac{28+ 10 \sqrt{3} }{16}

 =  >  \:  {x}^{2}  -  {y}^{2}  = ( { \frac{28 - 10 \sqrt{3} }{16} )}^{2}  -  ({ \frac{28+ 10 \sqrt{3} }{16} )}^{2}

This is in the form ,

 =  >  \:  {a}^{2}  -  {b}^{2}  = (a + b)(a - b)

 =  >  \: ( \frac{28- 10 \sqrt{3}  + 28 + 10 \sqrt{3} }{16} )( \frac{28- 10 \sqrt{3} - 28 - 10 \sqrt{3}  }{16} )

 =  >  \: ( \frac{56}{16} )( \frac{ - 20\sqrt{3} }{16} )

 =  >  \:  \frac{ - 35 \sqrt{3} }{8}

:-(Hope it helps u.

Shiksha04: Thanks... but the answer is not right
Shiksha04: The answer should be -10√3/11
Similar questions