Math, asked by chandan201, 1 year ago

If x =5-√3/5+√3. and y= 5+√3/5-√3,show that x²-y²=-10√3/11

Answers

Answered by pranay060804
9
rationalising x we get
x=
(5  -  \sqrt{3)  } ^{2}    \div 2

y =
(5 +  \sqrt{3)}  {}^{2}  \div 2
 {x}^{2}  -  {y}^{2}  = (x + y)(x - y)
put value get result
Answered by isyllus
2

Answer:

x^2-y^2= -\frac{280\sqrt{3}}{121}

Step-by-step explanation:

x=\frac{5-\sqrt{3}}{5+\sqrt{3}}

Rationalize the right side and we get

x=\frac{5-\sqrt{3}}{5+\sqrt{3}}\times\frac{5-\sqrt{3}}{5-\sqrt{3}}

x=\frac{(5-\sqrt{3})^2}{22}

y=\frac{5+\sqrt{3}}{5-\sqrt{3}}

Rationalize the right side and we get

y=\frac{5+\sqrt{3}}{5-\sqrt{3}}\times\frac{5+\sqrt{3}}{5+\sqrt{3}}

y=\frac{(5+\sqrt{3})^2}{22}

x+y=\frac{(5-\sqrt{3})^2}{22}+\frac{(5+\sqrt{3})^2}{22}\Rightarrow \frac{56}{22}

x-y=\frac{(5-\sqrt{3})^2}{22}-\frac{(5+\sqrt{3})^2}{22}\Rightarrow \frac{-20\sqrt{3}}{22}

As we know,

x^2-y^2=(x+y)(x-y)

Substitute x+y and x-y

x^2-y^2=\frac{56}{22}\cdot \frac{-20\sqrt{3}}{22}

x^2-y^2= -\frac{280\sqrt{3}}{121}


Similar questions