Math, asked by rishav61, 1 year ago

if x=5-√3/5+√3 and y=5+√3/5-√3, show that x²-y²=-10√3/11

Answers

Answered by rakeshmohata
83

x + y =  \frac{5 -  \sqrt{3} }{5 +  \sqrt{3} }  +  \frac{5 +  \sqrt{3} }{5 -  \sqrt{3} }  \\  =   \frac{ {(5 -  \sqrt{3} )}^{2} +  {(5 +  \sqrt{3} )}^{2}  }{(5 -  \sqrt{3} )(5 +  \sqrt{3} )}  \\  =  \frac{2( {5}^{2}  +  {( \sqrt{3} )}^{2} )}{ {5}^{2} -  {( \sqrt{3}) }^{2}  }  =  \frac{2(25 + 3)}{25 - 3}   \\  =  \frac{28}{11 }  \\  \\ x - y =  \frac{ 5-  \sqrt{3} }{5 +  \sqrt{3} }  -  \frac{5 +  \sqrt{3} }{5 -  \sqrt{3} }  \\  =  \frac{ {(5 -  \sqrt{3} )}^{2}    -   {(5  +  \sqrt{3})}^{2} }{ {5}^{2}  -  {( \sqrt{3} )}^{2} }  \\  =  \frac{ 2( - 2 \times 5 \times  \sqrt{3})  }{25 - 3}  =   -  \frac{10 \sqrt{3} }{11}  \\
Hope u like the process
=====================
 {x}^{2}  -  {y}^{2}  = (x - y)(x + y) \\  =  - \frac{10 \sqrt{3} }{11}  \times  \frac{28}{11}  =  -  \frac{280 \sqrt{3} }{121}
Hope this is ur required answer
Proud to help you


rishav61: thank you bhaiya
rakeshmohata: thanks for the brainliest one
rishav61: np bhaiya
Answered by tardymanchester
39

Answer:

LHS\neq RHS

Step-by-step explanation:

Given :  if x=5-\frac{\sqrt3}{5}+\sqrt3 and y=5+\frac{\sqrt3}{5}-\sqrt3

To Show : x^2-y^2=-10\frac{\sqrt3}{11}

Solution :      

We know that, x^2+y^2=(x+y)(x-y)

So, First we find the value of x+y by substituting the value of x and y,

x + y =\frac{5-\sqrt{3}}{5 +\sqrt{3}}+\frac{5 +\sqrt{3} }{5 -\sqrt{3}}\\\\x+y=\frac{{(5-\sqrt{3} )}^{2}+{(5 +\sqrt{3})}^{2}}{(5 -\sqrt{3})(5 +\sqrt{3})}\\\\x+y=\frac{2( {5}^{2}+{( \sqrt{3})}^{2})}{ {5}^{2}-{(\sqrt{3})}^{2}}\\\\x+y=\frac{2(25+3)}{25 - 3}\\\\x+y=\frac{28}{11}

The, find the value of x-y,

x-y= \frac{5-\sqrt{3}}{5+ \sqrt{3}}- \frac{5 + \sqrt{3}}{5 -\sqrt{3}}\\\\x-y= \frac{{(5 -\sqrt{3})}^{2}-{(5+ \sqrt{3})}^{2}}{{5}^{2} - {( \sqrt{3} )}^{2}}\\\\x-y = \frac{2( - 2\times 5 \times \sqrt{3})}{25- 3}\\\\x-y=-\frac{10\sqrt{3}}{11}

Now, Substituting the (x+y) and (x-y) in the formula,

x^2-y^2=-\frac{10\sqrt{3}}{11}\times\frac{28}{11}\\\\x^2-y^2=-\frac{280\sqrt{3}}{121}

Since from the result we get LHS\neq RHS.

Similar questions