Math, asked by tasmiyakhanam53, 1 year ago

If x=5-√3/5+√3 and y=5+√3/5-√3 show that x²-y²=-10√3/11

Answers

Answered by Deepanshi27
4
Hope it will helps uh...!!!
Attachments:
Answered by aquialaska
5

Answer:

Given: x=\frac{5-\sqrt{3}}{5+\sqrt{3}}\:\:and\;\:y=\frac{5+\sqrt{3}}{5-\sqrt{3}}

To Show : x^2-y^2=\frac{-10\sqrt{3}}{11}

Consider,

x=\frac{5-\sqrt{3}}{5+\sqrt{3}}

x=\frac{5-\sqrt{3}}{5+\sqrt{3}}\times\frac{5-\sqrt{3}}{5-\sqrt{3}}

x=\frac{25+3-10\sqrt{3}}{25-3}

x=\frac{14-5\sqrt{3}}{11}

Now Consider,

y=\frac{5+\sqrt{3}}{5-\sqrt{3}}

y=\frac{5+\sqrt{3}}{5-\sqrt{3}}\times\frac{5+\sqrt{3}}{5+\sqrt{3}}

y=\frac{25+3+10\sqrt{3}}{25-3}

y=\frac{14+5\sqrt{3}}{11}

Now,

LHS=x^2-y^2

=(\frac{14-5\sqrt{3}}{11})^2-(\frac{14+5\sqrt{3}}{11})^2

=\frac{196+75-140\sqrt{3}}{121}-\frac{196+75+140\sqrt{3}}{121}

=\frac{-280\sqrt{3}}{121}

=\frac{-10\sqrt{3}}{11}

=RHS

Hence Proved

Similar questions