Math, asked by owlahuja, 1 year ago

If x = (√5+ √3)/(√5- √3) and y = (√5- √3)/(√5 + √3), then find the value of x2 + y2.

Answers

Answered by vam2003
72
x=(√5+√3)(√5-√3)
  =√5²-√3²                                 (a+b)(a-b)=a²-b²
  =5-3
  =2
y=(√5-√3)(√5+√3)
  =√5²-√3²                                  (a+b)(a-b)=a²-b²
  =5-3
  =2
x²+y²= 2²+2²
        =4+4
        =8


Please mark as brainliest
Answered by wifilethbridge
38

Answer:

x^2 + y^2=47+6\sqrt{15}        

Step-by-step explanation:

Given : x=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}

            y=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}

To Find :x^2 + y^2

Solution:

x=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}

x=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} \times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}

x=\frac{5+\sqrt{15}+\sqrt{15}+3}{5-3}

x=\frac{8+2\sqrt{15}}{2}

x=4+\sqrt{15}

y=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\times \frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}-\sqrt{3}}

y=\frac{5-\sqrt{15}-\sqrt{15}-3}{5-3}

y=\frac{2-2\sqrt{15}}{2}

y=1-\sqrt{15}

x^2 + y^2

Substitute the values

(4+\sqrt{15})^2 + (1-\sqrt{15})^2

16+15+8\sqrt{15}+ 1+15-2\sqrt{15}

47+6\sqrt{15}

Hence x^2 + y^2=47+6\sqrt{15}                            

Similar questions