Math, asked by borimonuranjan, 1 month ago

If x = 5/8^-2 × 12/15^-2, then the value of x^-3 is​

Answers

Answered by py170686
0

Answer:

1/64

Step-by-step explanation:

Here is your answer:

Given that,

x = (\frac{5}{8})^{-2} ( \frac{12}{15})^{-2}x=(

8

5

)

−2

(

15

12

)

−2

To find,

The\ value\ of \ x^{-3}The value of x

−3

Solution:

We know that,

a^{-n}= (\frac{1}{a})^{n}a

−n

=(

a

1

)

n

--- (Identity)

Then,

x = (\frac{5}{8})^{-2} \times ( \frac{12}{15})^{-2} = ( \frac{8}{5})^{2} \times ( \frac{15}{12})^{2}x=(

8

5

)

−2

×(

15

12

)

−2

=(

5

8

)

2

×(

12

15

)

2

⇒ x = \frac{8\times 8}{5\times 5} \times \frac{15\times 15}{12\times 12} = \frac{2\times 2}{1\times 1} \times \frac{3\times 3}{3\times 3} = 2\times 2 = 4x=

5×5

8×8

×

12×12

15×15

=

1×1

2×2

×

3×3

3×3

=2×2=4

So , x = 4

Then,

x^{-3} = \frac{1}{x^{3}} = \frac{1}{4^{3}} = \frac{1}{4\times 4\times 4} = \frac{1}{64}x

−3

=

x

3

1

=

4

3

1

=

4×4×4

1

=

64

1

Therefore the answer is 1 / 64.

Similar questions