If (x + 5) is a factor of
2x³ + kx² - 11x - 30, then value of k be
Answers
Answer:
k = 9
Explanation:
Given polynomial,
⇒ 2x³ + kx² - 11x - 30
Whose one of the factor is (x + 5)
By factor theorem,
⇒ (x + 5) = 0
⇒ x + 5 = 0
⇒ x = -5
Substituting the value of ‘x’ in the polynomial,
⇒ 2x³ + kx² - 11x - 30 = 0
⇒ 2(-5)³ + k(-5)² - 11(-5) - 30 = 0
⇒ 2(-125) + 25k + 55 - 30 = 0
⇒ - 250 + 25k + 55 - 30 = 0
⇒ - 280 + 55 + 25k = 0
⇒ - 225 + 25k = 0
⇒ 25k = 225
⇒ k = 225/25
⇒ k = 9
∴ The value of ‘k’ is 9
_____________________
Verification:
⇒ 2x³ + kx - 11x - 30 = 0
Let's substitute x and k :-
⇒ 2(-5)³ + 9(-5)² - 11(-5) - 30 = 0
⇒ - 250 + 225 + 55 - 30 = 0
⇒ - 280 + 280 = 0
⇒ 0 = 0
Since, L. H. S. = R. H. S.
Hence, verified!!
Answer:
- P(x) = 2x³+kx²-11x-30
And (x+5) is a factor of the above polynomial.
There fore, x+5=0
Or, x=-5
- P(-5)=2×(-5)³+k(5)²-11(-5)-30
= 2×(-125) + 25k+55-30
=-250+25+25k
=-225 +25k
Now, -225+25k=0
or, 25k=225
or, k=9.