Math, asked by banbaripriyap7119h, 1 year ago

If x=5 - root 3 upon 5 + root 3 and x= 5 + root 3 upon 5 - root 3, show that x square - y square = 10 root 3 upon 11


HarishAS: I think the value u gave is wrong my friend, If any changes pls comment, Then i will edit my answer.

Answers

Answered by HarishAS
34
Hey friend, Harish here.

Here is your answer:

Given that,

1) x = \frac{5- \sqrt{3} }{5+ \sqrt{3} }

2) y =  \frac{5+ \sqrt{3} }{5- \sqrt{3} }

To prove:

 x^{2} -y^{2} =  \frac{10 \sqrt{3} }{11}

Solution:

First we must rationalize the denominators of x & y.

To rationalize the denominators we must multiply and divide the number by it's conjugate.

Conjugate of x is 5 - √3.

Conjugate of y is 5 +√3.

Then,

x = \frac{5- \sqrt{3} }{5+ \sqrt{3} }\times  \frac{5- \sqrt{3} }{5- \sqrt{3} } =  \frac{(5- \sqrt{3} )^{2}}{(5+ \sqrt{3})(5- \sqrt{3})  }

Now for multiplying the denominators use the identity (a+b)(a-b) = a² - b².

Then,  (5 + √3) (5 - √3) = 5² - (√3)²  = 25 - 3 = 22

⇒ x =  \frac{(5- \sqrt{3})^{2} }{22} =  \frac{(25+3-10 \sqrt{3}) }{22} =  \frac{28-10 \sqrt{3}  }{22} =  \frac{2(14-5 \sqrt{3}) }{2\times 11}  =  \frac{14-5 \sqrt{3} }{11}

Now rationalize y using the same method.

⇒ y =  \frac{(5+ \sqrt{3})^{2} }{22} = \frac{(25+3+10 \sqrt{3}) }{22} = \frac{28+10 \sqrt{3} }{22} = \frac{2(14+5 \sqrt{3}) }{2\times 11} = \frac{14+5 \sqrt{3} }{11}

Now we know that,

x² - y² = (x + y) (x - y)

⇒ (\frac{(14+5 \sqrt{3})+(14-5 \sqrt{3}) }{11})( \frac{(14+5 \sqrt{3})-(14-5 \sqrt{3})}{11})

⇒  ( \frac{28}{11})( \frac{10 \sqrt{3}}{11}) =  \frac{280 \sqrt{3} }{121}

\bold{Therefore \ the\ answer\ is\ \ \  \boxed{ \frac{280 \sqrt{3} }{121} } }
_______________________________________________

Hope my answer is helpful to you.
Answered by virtuematane
10

Answer:

Hence, the value of:

x^2-y^2=\dfrac{-280\sqrt{3}}{121}

Step-by-step explanation:

If:

x=\dfrac{5-\sqrt{3}}{5+\sqrt{3}}

and

y=\dfrac{5+\sqrt{3}}{5-\sqrt{3}}

Now we are asked to find the value of:

x^2-y^2

We know that:

x^2-y^2=(x-y)(x+y)

so,

x-y=\dfrac{5-\sqrt{3}}{5+\sqrt{3}}-\dfrac{5+\sqrt{3}}{5-\sqrt{3}}\\\\\\x-y=\dfrac{(5-\sqrt{3})(5-\sqrt{3})-(5+\sqrt{3})(5+\sqrt{3})}{(5-\sqrt{3})(5+\sqrt{3})}\\\\x-y=\dfrac{(5-\sqrt{3})^2-(5+\sqrt{3})^2}{25-3}\\\\x-y=\dfrac{25+3-10\sqrt{3}-25-3-10\sqrt{3}}{22}\\\\x-y=\dfrac{-20\sqrt{3}}{22}\\\\x-y=\dfrac{-10\sqrt{3}}{11}

Similarly,

x+y=\dfrac{5-\sqrt{3}}{5+\sqrt{3}}+\dfrac{5+\sqrt{3}}{5-\sqrt{3}}\\\\\\x+y=\dfrac{(5-\sqrt{3})(5-\sqrt{3})+(5+\sqrt{3})(5+\sqrt{3})}{(5-\sqrt{3})(5+\sqrt{3})}\\\\\\x+y=\dfrac{(5-\sqrt{3})^2+(5+\sqrt{3})^2}{25-3}\\\\x+y=\dfrac{25+3-10\sqrt{3}+25+3+10\sqrt{3}}{22}\\\\x+y=\dfrac{56}{22}\\\\x+y=\dfrac{28}{11}

Hence,

x^2-y^2=\dfrac{28}{11}\times \dfrac{-10\sqrt{3}}{11}\\\\x^2-y^2=\dfrac{-280\sqrt{3}}{121}

Hence, the value of:

x^2-y^2=\dfrac{-280\sqrt{3}}{121}

Similar questions