If x = 5 root2 -7 find the value of x^ 3 - 1/x^3
Answers
Answer:
Step-by-step explanation:
Given that,
x = 5√2 - 7
1/ x = 1 / (5√2 - 7 )
Now rationalize the denominator
1 / x = 1 / ( 5√2 - 7 ) × (5√2 + 7) ( 5√2 + 7)
= 1 × ( 5√2 + 7 ) / ( 5√2 - 7 ) ( 5√2 + 7 )
= 5√2 + 7 / [ (5)^2 (√2 )^2 - ( 7 )^2 ] ( ∵ ( a+b ) (a -b ) = a ^2 - b ^2 )
= 5√2 + 7 / ( 25 × 2 - 49 ) ( ∵ root and square 2 are cancelled )
= 5√2 + 7 / ( 50 - 49 )
= 5√2 + 7 / ( 1 )
= 5√2 + 7
∴ 1 / x = 5√2 + 7
Now we find x^3 and 1 / x ^3
x^3 = ( 5√2 - 7 )^3
= ( 5√2 )^3 - 3 × ( 5√2 )^2 × 7 + 3 × 5√2 × ( 7 )^2 - ( 7 )^3
= [ ( 5 )^3 × ( √2 )^2 × ( √2 ) ] - 3 × [ ( 5 )^2 × ( √2 )^2 ] × 7 + 15√2 × 49 - 343
= 125 × 2 × √2 - 3 × 25 × 2 × 7 + 735√2 - 343
= 250√2 - 1020 + 735√2 - 343
= 985√2 - 1363
1 / ( x )^3 = ( 5√2 + 7 )^3
= (5√2)^3 + 3 × (5√2)^2 × 7 + 3 × 5√2 × ( 7 )^2 + ( 7 )^3
= [ (5)^3 × (√2)^3 ] + 3 × [ (5)^2 × (√2 )^2 ] × 7 + 15√2 × 49 + 343
= [ 125 × (√2)^2 × (√2) ] + 3 × 25 × 2 × 7 + 735√2 + 343
= 125 ×2 × √2 + 1020 + 735√2 + 343
= 250√2 + 735√2 + 1020 + 343
= 935√2 + 1363
∴ x ^3 - 1 / x ^3 = ( 935√2 - 1363 ) - ( 935√2 + 1363 )
= 935√2 - 1363 - 935√2 - 1363
= - 1363 - 1363 ( ∵ both +935√2 and -935√2 are cancelled )
= - 2726 is the answer. ( ∵both are added but symbol is same )
Step-by-step explanation: