Physics, asked by navnathdudhate9863, 8 months ago

If x= 5t-t^3, y=t^2+4t find dy/dx at t= 3

Answers

Answered by Anonymous
54

Answer:

 \boxed{\mathfrak{\frac{dy}{dx}  = -2.2}}

Given:

 \sf x = 5t -  {t}^{3}  \\  \sf y =  {t}^{2}  + 4t

To Find:

 \sf \frac{dy}{dx}  \: at \: t = 3

Explanation:

 \sf \implies \frac{dx}{dy}  \\  \\  \sf \implies  \frac{dx}{dy}  \times  \frac{dt}{dt}  \\  \\  \sf \implies  \frac{ \frac{dx}{dt} }{ \frac{dy}{dt} }  \\  \\  \sf \implies  \frac{ \frac{d}{dt} (5t -  {t}^{3}) }{  \frac{d}{dt}( {t}^{2} + 4t) }  \\  \\  \sf \implies  \frac{5 - 3 {t}^{2} }{2t + 4} \\  \\   \sf At \: t = 3 :  \\ \sf \implies  \frac{5 - 3 {(3)}^{2} }{2(3) + 4}  \\  \\  \sf \implies  \frac{5 - 27}{6 + 4}  \\  \\  \sf \implies  -  \frac{22}{10}  \\  \\  \sf \implies  - 2.2

Similar questions