if (x+5y) = 10 find the value of x^3+125y^3+150xy- 1000
Answers
Answered by
3
Answer:
150xy
Step-by-step explanation:
x+5y=10
x=10-5y
=(10-5y)^3+ 125y^3+ 150 xy - 1000
=1000 - 125y^3 + 125y^3 +150xy -1000
=1000-1000 -125y^3+125y^3 +150xy
= x+5y=10
x=10-5y
=(10-5y)^3+ 125y^3+ 150 xy - 1000
=1000 - 125y^3 + 125y^3 +150xy -1000
=1000-1000 -125y^3+125y^3 +150xy
= 150xy
Answered by
30
Answer:
Given,
(x + 5y) = 10
cubing both sides,
( x + 5y)³ = 10³
x³ + (5y)³ + 3 * x * 5y ( x + y) = 1000
x³ + 125y³ + 3 * x * 5y ( x + 5y) = 1000
x³ + 125y³ + 15xy * 10 = 1000
x³ + 125y³ + 150xy - 1000 = 0.
Similar questions