Math, asked by suhafimehnaz, 10 months ago

if (x+5y) = 10 find the value of x^3+125y^3+150xy- 1000​

Answers

Answered by aliyakumar846
3

Answer:

150xy

Step-by-step explanation:

x+5y=10

x=10-5y

=(10-5y)^3+ 125y^3+ 150 xy - 1000

=1000 - 125y^3 + 125y^3 +150xy -1000

=1000-1000 -125y^3+125y^3 +150xy

= x+5y=10

x=10-5y

=(10-5y)^3+ 125y^3+ 150 xy - 1000

=1000 - 125y^3 + 125y^3 +150xy -1000

=1000-1000 -125y^3+125y^3 +150xy

= 150xy

Answered by Anonymous
30

Answer:

<body bgcolor="r"><font color="cyan">

\huge{\red{\bf{\mathfrak{Answer-:}}}}

\huge{\bold{❤}}

\huge{\blue{\bf{\mathfrak{solution\:-:}}}}

Given,

(x + 5y) = 10

cubing both sides,

( x + 5y)³ = 10³

x³ + (5y)³ + 3 * x * 5y ( x + y) = 1000

x³ + 125y³ + 3 * x * 5y ( x + 5y) = 1000

x³ + 125y³ + 15xy * 10 = 1000

x³ + 125y³ + 150xy - 1000 = 0.

Similar questions