Math, asked by azlankhan00, 4 months ago

if x = √6- √2/ √6+ √2 find x + 1/x​

Answers

Answered by Anonymous
2

Given:-

Value of x = \frac{\sqrt{6} -\sqrt{2} }{\sqrt{6} +\sqrt{2} }

To find:-

Value of x+\frac{1}{x}

Solution:-

x+\frac{1}{x}

= \frac{\sqrt{6} -\sqrt{2} }{\sqrt{6} +\sqrt{2} } + \frac{1}{\frac{\sqrt{6} -\sqrt{2} }{\sqrt{6} +\sqrt{2} }}

= \frac{\sqrt{6} -\sqrt{2} }{\sqrt{6} +\sqrt{2} }+\frac{\sqrt{6} +\sqrt{2} }{\sqrt{6}-\sqrt{2}  }

= \frac{(\sqrt{6}-\sqrt{2}  )^{2}+(\sqrt{6}+\sqrt{2} )^{2}  }{(\sqrt{6}+{\sqrt{2} }  )(\sqrt{6}-\sqrt{2}  )}

= \frac{6+2-2(\sqrt{6} )(\sqrt{2} )+6+2+2(\sqrt{6} )(\sqrt{2} )}{6-2}

= \frac{16-2\sqrt{12} +2\sqrt{12} }{4}

= \frac{16}{4}

= 4

Hence, the solution of the question is 4

Similar questions