Math, asked by saadhviH, 11 hours ago

If x=6−√35, find the value of x²+1÷x².

Answers

Answered by ritupadihar4
1

hope you like .

plz.. mark me brainlist

Attachments:
Answered by junaida8080
0

Answer:

The value of x^{2} + \frac{1}{x^{2} } = 142

Step-by-step explanation:

Given x=6-\sqrt{35},

We can write  \frac{1}{x} = \frac{1}{6-\sqrt{35} }

Rationalizing the numerator and the denominator,

\frac{1}{x}= \frac{1}{6-\sqrt{35}}\times \frac{6+\sqrt{35}}{6+\sqrt{35}}

\frac{1}{x}= \frac{1.(6+\sqrt{35})}{(6-\sqrt{35})(6+\sqrt{35})}

\frac{1}{x}= \frac{6+\sqrt{35}}{(6)^{2}-(\sqrt{35})^{2}}  [\because (a-b)(a+b)=a^{2}-b^{2}]

\frac{1}{x}=\frac{6+\sqrt{35}}{36-35}

\frac{1}{x} = 6+\sqrt{35}

Now finding the value of x^{2} +\frac{1}{x^{2} },

x^{2} +\frac{1}{x^{2} } = (6-\sqrt{35} )^{2} + (6+\sqrt{35} )^{2}

x^{2} +\frac{1}{x^{2} } = 6^{2} +(\sqrt{35})^{2} -2(6)(\sqrt{35} ) +6^{2} +(\sqrt{35}^{2}) +2(6)(\sqrt{35})

x^{2} + \frac{1}{x^{2} } = 36+35+36+35

x^{2} + \frac{1}{x^{2} } = 142

Similar questions