Math, asked by rashmimatwaya315, 2 days ago

if x=√6+√5,then the value of x²+1/x²-2 is​

Answers

Answered by Anonymous
43

STEP-BY-STEP EXPLANATION:

.

 \bf x =  \sqrt{6}  +  \sqrt{5}  \:  \:  \: ...(given) \\  \\

:\implies\tt  {x}^{2}   = ( \sqrt{6} +  \sqrt{5})^{2}    \\

:\implies\tt  {x}^{2}  =  { (\sqrt{6} )}^{2}  + 2( \sqrt{6} )( \sqrt{5} ) +  {( \sqrt{5}) }^{2}  \\

:\implies\tt  {x}^{2}  = 6 + 2 \sqrt{30}  + 5 \\

:\implies\tt \bf  {x}^{2}  = 11 + 2 \sqrt{30}   \\  \\

:\implies\tt  \frac{1}{ {x}^{2} }  =  \frac{1}{11 + 2 \sqrt{30} }  \\

:\implies\tt  \frac{1}{ {x}^{2} }  =  \frac{1}{11 + 2 \sqrt{30} }   \times  \frac{11  -  2 \sqrt{30} }{11 - 2 \sqrt{30} }  \\

:\implies\tt  \frac{1}{ {x}^{2} }  =  \frac{11 - 2 \sqrt{30} }{ {11}^{2} -  {(2 \sqrt{30}) }^{2}  }  \\

:\implies\tt  \frac{1}{ {x}^{2} }  =  \frac{11 - 2 \sqrt{30} }{121 - 120}  \\

:\implies\tt  \bf  \frac{1}{x ^{2} }  = 11 - 2 \sqrt{30}  \\  \\

:\implies\tt  {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2  = 11  +  2 \sqrt{30}  + 11 - 2 \sqrt{30} - 2 \\

:\implies\tt  {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2 = 22 - 2 \\

  \bf  Hence, \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2 = 20 \\  \\

REQUIRED ANSWER,

.

  •   \bf {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2 = 20 \\  \\
Answered by Anonymous
3

Answer: 20.

Explanation:

x = √6 + √5

∴ 1/x = 1/(√6 + √5) = 1(√6 - √5)/(√6 + √5)(√6 - √5)

[Multiplying numerator & denominator by its conjugate.]

= 1/x = √6 - √5

Now, finding x² + 1/x² - 2:-

x² + 1/x² - 2 = (x)² + (1/x)² - 2(x)(1/x)

= (x - 1/x)²

= [(√6 + √5) - (√6 - √5)]²

= (2√5)²

= 20.

Similar questions