Math, asked by sweetmana180, 10 months ago

if x = √6+√5 then x^2+1/x^2-2 is equal to?​

Answers

Answered by CcFLEX
0

the term written is( x-1/x )^2

retionalise denominator of second term then proceed you will get your answer

Answered by mysticd
1

 i ) x = \sqrt{6} + \sqrt{5} \: --(1)

 ii ) \frac{1}{x} \\= \frac{ 1}{ (\sqrt{6} + \sqrt{5})}\\= \frac{ (\sqrt{6} - \sqrt{5})}{ (\sqrt{6} + \sqrt{5})(\sqrt{6} - \sqrt{5})}\\= \frac{ (\sqrt{6} - \sqrt{5})}{ (\sqrt{6})^{2} - (\sqrt{5})^{2}}\\=  \frac{ (\sqrt{6} - \sqrt{5})}{ 6 - 5}\\=  \frac{ (\sqrt{6} - \sqrt{5})}{ 1}\\= \sqrt{6} - \sqrt{5} \: --(2)

 iii ) x - \frac{1}{x} \\= \sqrt{6} + \sqrt{5} - (\sqrt{6} - \sqrt{5}) \\= \sqrt{6} + \sqrt{5} - \sqrt{6} + \sqrt{5} \\= 2\sqrt{5} \: --(3)

 Now, \red{ x^{2} + \frac{1}{x^{2}} - 2 } \\= x^{2} + \frac{1}{x^{2}} - 2\times x \times \frac{1}{x} \\= \Big( x - \frac{1}{x} \Big)^{2} \\= (2\sqrt{5} )^{2} \:[ From \: (3) ]

 = 4 \times 5 \\= 20

Therefore.,

 Now, \red{Value \:of \:  x^{2} + \frac{1}{x^{2}} - 2 }\\\green { = 20 }

•••♪

Similar questions