if x=6-sqrt(35) find(1)/(x),x+(1)/(x),x^2+(1)/(x^2)
Answers
Answered by
1
Given,
x=6-sqrt(35)
1. (1)/(x)=1/(6-sqrt(35))
Rationalizing denominator,
(1)/(x)=
{1/(6-sqrt(35))}*{6+sqrt(35)/6+sqrt(35)}
ie, (1)/(x)=(6+sqrt(35)/6^2-sqrt(35)^2)
Since
We have,
(1)/(x)=6+sqrt(35)/(36-35)
(1)/(x)=6+sqrt(35)
2. x+(1)/(x)= 6-sqrt(35)+6+sqrt(35)
= 6+6
=12
3. x^2+(1)/(x^2)
We know that
Here a=x, b=1/x
We have {x+(1)/(x)}^2 =12^2
=144
x^2+(1)/(x^2) = {x+(1)/(x)}^2 - (2*x*1/x)
=144-2
=142
gdgbn:
are you sure this is correct
Similar questions