Math, asked by srjgabbar316, 11 months ago

if x= √7+2√12 and y=√7-2√12 find x^3+y^3​

Answers

Answered by Anonymous
9

Answer:

  \large\bold\red{ {x}^{3}  +  {y}^{3}  = 302 \sqrt{7} }

Step-by-step explanation:

Given,

x =  \sqrt{7}  + 2 \sqrt{12}

And,

y =  \sqrt{7}  - 2 \sqrt{12}

Now,

We know that,

 \boxed{ \bold{{x}^{3}  +  {y}^{3}  = (x + y)( {x}^{2}  +  {y}^{2}  - xy)}}

Therefore,

We get,

 =  > x + y =  \sqrt{7}  + 2 \sqrt{12}  +  \sqrt{7}  - 2 \sqrt{12}  \\  \\  =  > x + y = 2 \sqrt{7}

And,

  =  > {x}^{2}  =  {( \sqrt{7}  + 2 \sqrt{12} )}^{2}  \\  \\  =  >  {x}^{2} =  {( \sqrt{7}) }^{2}   +  {(2 \sqrt{12}) }^{2}  + 2 \times  \sqrt{7}  \times 2 \sqrt{12}  \\  \\  =  >  {x}^{2}  = 7 + 48 + 8 \sqrt{21} \\  \\  =  >  {x}^{2}   = 55 + 8 \sqrt{21}

Similarly,

We have,

  =  > {y}^{2}  =  {( \sqrt{7} - 2 \sqrt{12})  }^{2}  \\  \\   =  >  {y}^{2} = 55 - 8 \sqrt{21}

Also,

 =  > xy = ( \sqrt{7}   + 2 \sqrt{12} )( \sqrt{7}  - 2 \sqrt{12} ) \\  \\  =  > xy =  {( \sqrt{7}) }^{2}  -  {(2 \sqrt{12} )}^{2}  \\  \\  =  > xy = 7 - 48 \\  \\   =  > xy =  - 41

Now,

Substituting the respective values,

We get,

 =  >  {x}^{3}   +   {y}^{3}  = 2 \sqrt{7}(55 + 8 \sqrt{21}   + 55 - 8 \sqrt{21}  - ( - 41)) \\  \\  =  >  {x}^{3}  +  {y}^{3}  = 2 \sqrt{7} (110 + 41) \\  \\  =  >  {x}^{3}  +  {y}^{3}  =151 \times  2 \sqrt{7}   \\  \\  =  >  \bold{ {x}^{3}  +  {y}^{3}  = 302 \sqrt{7} }

Similar questions