Math, asked by ajarchit5242, 10 months ago

If x=√7+√2/√7-√2 then find the value of x^2+1/x^2

Answers

Answered by BrainlyPopularman
3

ANSWER :

 \\  \to { \boxed{ \bold{ {x}^{2} +   \dfrac{1}{ {x}^{2} }     =\frac{ 274 }{25} }}}  \\

EXPLANATION :

GIVEN :

▪︎ { \bold{x =  \dfrac{ \sqrt{7}  +  \sqrt{2} }{ \sqrt{7} -  \sqrt{2}  } }} \\

TO FIND :

▪︎  { \bold{Value \:  \: of \:  \:   \to {x}^{2}  +  \dfrac{1}{ {x}^{2} }  }} \\

SOLUTION :

▪︎ We know that –

 \\  \implies {  \boxed{\bold{(a + b)^{2} =  {a}^{2} +  {b}^{2}  + 2ab  }}}  \\

▪︎ So that –

 \\  \implies {\bold{(x +  \frac{1}{x} )^{2} =  {x}^{2} +   \dfrac{1}{ {x}^{2} }   + 2(x)( \frac{1}{x} )  }}  \\

 \\  \implies {\bold{(x +  \frac{1}{x} )^{2} =  {x}^{2} +   \dfrac{1}{ {x}^{2} }   + 2}}  \\

 \\  \implies {\bold{ {x}^{2} +   \dfrac{1}{ {x}^{2} }     = (x +  \frac{1}{x} )^{2} - 2 }}  \\

▪︎ Now put the values –

 \\  \implies { \bold{ {x}^{2} +   \dfrac{1}{ {x}^{2} }     = (\dfrac{ \sqrt{7}  +  \sqrt{2} }{ \sqrt{7} -  \sqrt{2} } +   \dfrac{ \sqrt{7}  -  \sqrt{2} }{ \sqrt{7}  +  \sqrt{2} }  )^{2} - 2 }}  \\

 \\  \implies { \bold{ {x}^{2} +   \dfrac{1}{ {x}^{2} }     =[ \frac{ {( \sqrt{7}  +  \sqrt{2} )}^{2}  +  {( \sqrt{7}  -  \sqrt{2} )}^{2} }{ {( \sqrt{7}) }^{2}  -  {( \sqrt{2}) }^{2} } ]^{2} - 2 }}  \\

 \\  \implies { \bold{ {x}^{2} +   \dfrac{1}{ {x}^{2} }     =[ \frac{ 7 + 2 + 2 \sqrt{14}   +  7 + 2 - 2 \sqrt{14}  }{ 7 - 2 } ]^{2} - 2 }}  \\

 \\  \implies { \bold{ {x}^{2} +   \dfrac{1}{ {x}^{2} }     =(\frac{ 18 }{5} )^{2} - 2 }}  \\

 \\  \implies { \bold{ {x}^{2} +   \dfrac{1}{ {x}^{2} }     =(\dfrac{ 324 }{25} )- 2 }}  \\

 \\  \implies { \boxed{ \bold{ {x}^{2} +   \dfrac{1}{ {x}^{2} }     =\frac{ 274 }{25} }}}  \\

Similar questions