Math, asked by poonamyadav916113276, 9 months ago

if x = (-7/2) power4 ÷(-7/2)power5 × (-7/2)power 0 ×(-7/2)power 2 , find the value of x power-3 .​

Answers

Answered by Anonymous
1

ANSWER✔

\large\underline\bold{GIVEN,}

\sf\dashrightarrow x= \left( \left( \dfrac{\dfrac{-7}{2}}{\dfrac{-7}{2}}  \right)^5  \times \bigg(\dfrac{-7}{2} \bigg)^0 \times \bigg( \dfrac{-7}{2} \bigg)^2 \right){-3}

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow \:THE\:VALUE\:OF\:X

✯IDENTITY IN USE,

\large{\boxed{\bf{ \star\:\: a^0=1 \:\: \star}}}

\large\underline\bold{SOLUTION,}

\sf\therefore x= \left( \left( \dfrac{\dfrac{-7}{2}}{\dfrac{-7}{2}}  \right)^5  \times \bigg(\dfrac{-7}{2} \bigg)^0 \times \bigg( \dfrac{-7}{2} \bigg)^2 \right){-3}

\sf\implies  x= \left( \cancel{\left( \dfrac{\dfrac{-7}{2}}{\dfrac{-7}{2}}  \right)}^5  \times 1 \times \bigg( \dfrac{-7}{2} \bigg)^2 \right){-3}

\sf\implies \left( 1 \times 1 \times \bigg( \dfrac{49}{4} \bigg) \right)^{-3}

\sf\implies\bigg( \dfrac{49}{4} \bigg)^{-3}

\sf\implies\bigg( \dfrac{4}{49} \bigg)^3

\sf\implies \bigg(\dfrac{4}{49} \times \dfrac{4}{49} \times \dfrac{4}{49} \bigg)

\sf\implies \dfrac{4\times 4\times 4 }{ 49 \times 49 \times 49}

\sf\implies \dfrac{64}{117649}

\large{\boxed{\bf{ \star\:\:x= \dfrac{64}{117649} \:\: \star}}}

_________________

Answered by ItzCaptonMack
0

\large\underline{\underline{\bold{\pink{\mathfrak{AnSwEr}}}}}

\large\underline\bold{GIVEN,}

\sf\dashrightarrow x= \left( \left( \dfrac{\dfrac{-7}{2}}{\dfrac{-7}{2}}  \right)^5  \times \bigg(\dfrac{-7}{2} \bigg)^0 \times \bigg( \dfrac{-7}{2} \bigg)^2 \right){-3}

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow \:THE\:VALUE\:OF\:X

IDENTITY IN USE,

\large{\boxed{\bf{ \star\:\: a^0=1 \:\: \star}}}

\large\underline\bold{SOLUTION,}

\sf\therefore x= \left( \left( \dfrac{\dfrac{-7}{2}}{\dfrac{-7}{2}}  \right)^5  \times \bigg(\dfrac{-7}{2} \bigg)^0 \times \bigg( \dfrac{-7}{2} \bigg)^2 \right){-3}

\sf\implies  x= \left( \cancel{\left( \dfrac{\dfrac{-7}{2}}{\dfrac{-7}{2}}  \right)}^5  \times 1 \times \bigg( \dfrac{-7}{2} \bigg)^2 \right){-3}

\sf\implies \left( 1 \times 1 \times \bigg( \dfrac{49}{4} \bigg) \right)^{-3}

\sf\implies\bigg( \dfrac{49}{4} \bigg)^{-3}

\sf\implies\bigg( \dfrac{4}{49} \bigg)^3

\sf\implies \bigg(\dfrac{4}{49} \times \dfrac{4}{49} \times \dfrac{4}{49} \bigg)

\sf\implies \dfrac{4\times 4\times 4 }{ 49 \times 49 \times 49}

\sf\implies \dfrac{64}{117649}

\large{\boxed{\bf{ \star\:\:x= \dfrac{64}{117649} \:\: \star}}}

Similar questions