Math, asked by kodipelly, 1 year ago

if x=7+√3 find the value of x+1/x

Answers

Answered by saheb20
1
the value of x is given
therefore, 1/x = 7-√3 (by rationalising)
now,
x +1/x
(7+√3) + (7-√3)
7^2 + √3^2
49 +3
52
Answered by BrainlyQueen01
4
Hey mate !

_______________________

Given :

x = 7 +  \sqrt{3}

 \frac{1}{x}  =  \frac{1}{7 +  \sqrt{3} }  \times  \frac{7 -  \sqrt{3} }{7 -  \sqrt{3} }  \\  \\  \\  \frac{1}{x}  =  \frac{7 -  \sqrt{3} }{(7) {}^{2} - ( \sqrt{3}) {}^{2}   }  \\  \\  \frac{1}{x}  =  \frac{7 -  \sqrt{3} }{49 - 3}  \\  \\  \frac{1}{x}  =  \frac{7 - 4 \sqrt{3} }{46}

Now,

x +  \frac{1}{x}  \\  \\ 7  +   \sqrt{3}  +  \frac{7 -  \sqrt{3} }{46}  \\  \\  \frac{46(7 +  \sqrt{3}) + 7 -  \sqrt{3}  }{46}  \\  \\  \frac{322 + 46 \sqrt{3} + 7 -  \sqrt{3}  }{46}  \\  \\  \frac{329 + 45 \sqrt{3} }{46}


_______________________

Thanks for the question !

☺️☺️☺️☺️
Similar questions