if x=√7+4√3/7-4√3 then find x^2(x+14)^2
Attachments:
Answers
Answered by
7
Hi ,
1 ) √7 + 4√3
= √7 + 2√6
= √ (√6 )² + 1² + 2 × √6 × √1
= √ ( √6 + 1 )²
= √6 + 1 ---( 1 )
2 ) similarly ,
√7 - 4√3 = √6 - 1----( 2 )
It is given that ,
x = √[( 7 + 4√3 )/( 7 -4√3 ) ]
x =√[ ( √6 + 1 )/ ( √6 - 1 )]
x =√ [ (√6+1 ) ( √6 + 1 )]/[ (√6 - 1 )( √6 + 1 ) ]
x = √ [ (√6 + 1 )²/5 ]
x = ( √6 + 1 )/√5 ---( 3 )
do the square of equation ( 3 ) , we get
x² = ( √6 + 1 )² /5
x² = ( 6 + 1 + 2√6 ) /5
x² = (7 + 2√6 )/5 ---( 4 )
x²( x + 14 )² = x²(x² + 28x + 196)
= [(7+2√6)/5][(7+2√6 )/5 +28[ (√6 +1)/√5+196]
I hope this helps you.
: )
1 ) √7 + 4√3
= √7 + 2√6
= √ (√6 )² + 1² + 2 × √6 × √1
= √ ( √6 + 1 )²
= √6 + 1 ---( 1 )
2 ) similarly ,
√7 - 4√3 = √6 - 1----( 2 )
It is given that ,
x = √[( 7 + 4√3 )/( 7 -4√3 ) ]
x =√[ ( √6 + 1 )/ ( √6 - 1 )]
x =√ [ (√6+1 ) ( √6 + 1 )]/[ (√6 - 1 )( √6 + 1 ) ]
x = √ [ (√6 + 1 )²/5 ]
x = ( √6 + 1 )/√5 ---( 3 )
do the square of equation ( 3 ) , we get
x² = ( √6 + 1 )² /5
x² = ( 6 + 1 + 2√6 ) /5
x² = (7 + 2√6 )/5 ---( 4 )
x²( x + 14 )² = x²(x² + 28x + 196)
= [(7+2√6)/5][(7+2√6 )/5 +28[ (√6 +1)/√5+196]
I hope this helps you.
: )
Answered by
6
Answer:
[a(a-14)]^2 = 1
Step-by-step explanation:
Formula used
a^2 - b^2 = (a+b) (a-b)
Attachments:
Similar questions