Math, asked by mvipin420, 5 months ago

If x = 7 + 4√3 and xy = 1 then find the value of 1/x squre + 1/y squre​

Answers

Answered by lovelylavanya44418
16

answer

x = 7 +  \sqrt{3}

xy = 1

so \:   {} \frac{1}{x} ^{2}  =  {}^ \frac{1}{ {x}^{2} } {2}  +  \frac{1}{y}

ans =  \frac{1}{ {x}^{2}   }  {}^{2}  +  \frac{1}{y}

hope \: this \: helps \: u....

dont \: forget \: to \: follow \: me \: plz

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \beta y \: l \alpha v \alpha ny \alpha

 \:  \:  \:  \:  \alpha d \alpha nce \: h \alpha ppy \: new \: ye \alpha r

Answered by Anonymous
0

answer

x = 7 + \sqrt{3}x=7+

3

xy = 1xy=1

so \: {} \frac{1}{x} ^{2} = {}^ \frac{1}{ {x}^{2} } {2} + \frac{1}{y}so

x

1

2

=

x

2

1

2+

y

1

ans = \frac{1}{ {x}^{2} } {}^{2} + \frac{1}{y}ans=

x

2

1

2

+

y

1

Similar questions