Math, asked by murugesan32, 11 months ago

If x=7+4√3 and xy=1,what is the value of 1/x^2+1/y^2?​

Answers

Answered by Anonymous
9

given :-

x = 7 + 4√3

xy = 1 -------(i)

putting value of x = 7 + 4√3 in (i)

➡ (7 + 4√3)y = 1

➡ y = 1/(7 + 4√3)

or y = 1/x

now, we've to find the value of 1/x² + 1/y²

let's find the value of x² and y² first

x² = (7 + 4√3)²

using identity (a + b)² = a² + 2ab + b²

= (7)² + 2(7)(4√3) + (4√3)²

= 49 + 56√3 + 48

= 97 + 56√3

➡ 1/x² = 1/(97 + 56√3)

by rationalizing (in the attachment) we get, 1/x² = 97 - 56√3

y = 1/x

➡ 1/y = x

➡ 1/y² = x²

➡ 1/y² = 97 + 56√3

hence, value of 1/x² + 1/y²

= (97 - 56√3) + (97 + 56√3)

= 97 - 56√3 + 97 - 56√3

= 194 FINAL ANSWER

Attachments:
Answered by TRISHNADEVI
5

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \underline{ \mathfrak{ \: Given, \: }} \\  \\ \:  \:  \:  \:  \:  \:  \tt{ x = 7 + 4 \sqrt{3} } \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{ xy = 1} \\  \\  \underline{ \mathfrak{ \:To \:  \:  find :-  \: }} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt {\frac{1}{x {}^{2} }  +  \frac{1}{y  {}^{2}  }  =   \: ?}

 \underline{ \mathfrak{ \: Now, \: }} \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \tt{xy = 1 }\\ \\   \tt{\implies y =  \frac{1}{x} } \\  \\  \tt{\implies y =  \frac{1}{7 +4 \sqrt{3}  }}  \\  \\ \tt{  \implies y =  \frac{1(7  - 4 \sqrt{3} )}{(7 + 4 \sqrt{3})(7  - 4 \sqrt{3})  }}  \\  \\ \tt{\implies y  =  \frac{7 - 4 \sqrt{3} }{(7) {}^{2} - (4 \sqrt{3}  ) {}^{2} }}  \\  \\  \tt{\implies y  = \frac{7 - 4 \sqrt{3} }{49 - 48} } \\  \\  \tt{\implies y =  \frac{7 - 4 \sqrt{3} }{1}}  \\  \\   \:  \:  \:  \:  \:  \:  \tt{ \therefore \:  \: y= 7 - 4 \sqrt{3} }

 \underline{ \mathfrak{ \: Again, \: }} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{xy = 1} \\  \\  \sf{ \implies \: y =  \frac{1}{x} } \\  \\ \sf{ \implies \: y {}^{2}  = ( \frac{1}{x}) {}^{2}  } \\  \\ \sf{ \implies \: \frac{1}{x {}^{2} }  = y {}^{2} } \\  \\ \sf{ \implies \: \frac{1}{x {}^{2} }  = (7 - 4 \sqrt{3} ) {}^{2} } \\  \\  \sf{ \implies \: \frac{1}{x {}^{2} } = (7) {}^{2}   - 2 \times 7 \times  4\sqrt{3}  + (4 \sqrt{3} ) {}^{2} } \\  \\ \sf{ \implies \: \frac{1}{x {}^{2} } =49 - 56 \sqrt{3} + 48 } \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \therefore \:  \:  \underline{ \:  \: \:  \frac{1}{x {}^{2} } =97 - 56 \sqrt{3} \:  \:  \:  }}

  \underline{\mathfrak{ \: And,  \: }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{xy = 1} \\  \\  \sf{ \implies \: x =  \frac{1}{y} } \\  \\ \sf{ \implies \: x {}^{2}  = ( \frac{1}{y}) {}^{2}  } \\  \\  \sf{ \implies  \:  \frac{1}{y {}^{2} }  = x {}^{2} } \\  \\ \sf{ \implies \: \frac{1}{y {}^{2} }  = (7  + 4 \sqrt{3} ) {}^{2} } \\  \\  \sf{ \implies \: \frac{1}{y {}^{2} } = (7) {}^{2}    +  2 \times 7 \times  4\sqrt{3}  + (4 \sqrt{3} ) {}^{2} } \\  \\ \sf{ \implies \: \frac{1}{y {}^{2} } =49  +  56 \sqrt{3} + 48 } \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \therefore \:  \:  \underline{ \:  \:  \: \frac{1}{y {}^{2} } =97  +  56 \sqrt{3} \:  \:  \:  \:  } \: }

 \bold{ \therefore \:  \:  \red{ \frac{1}{x {}^{2} }  +  \frac{1}{y {}^{2}}}  = (97 - 56 \sqrt{3} ) + (97 +  56\sqrt{3} )} \\  \\  \bold{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 97 - \cancel{ 56 \sqrt{3}} + 97 +  \cancel{56\sqrt{3}}} \\  \\  \bold{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 97 + 97} \\  \\  \bold{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:=  \red{194}}

Similar questions