If x=7+4√3 and xy = 1 , what is the value of 1/x2+1/y2 ?
Answers
Answered by
14
Hi ,
x = 7 + 4√3 ---( 1 )
xy = 1 ( given )
y = 1/x = 1/ ( 7 + 4√3 )
= ( 7 - 4√3 ) / [ (7+4√3)(7-4√3)]
= ( 7 - 4√3 ) /[ 7² - ( 4√3 )² ]
= ( 7 - 4√3) / ( 49 - 48 )
= 7 - 4√3 ----( 2 )
Now ,
1/x² + 1/y²
= ( y² + x² ) / x² y²
= ( x² + y² ) / ( xy )²
= [(7+4√3)²+(7-4√3)²]/[(7+4√3)(7-4√3)]²
= 2[ 7² + ( 4√3)² ]/1
= 2[ 49 + 48 ]
= 2 × 97
= 194
I hope this helps you.
: )
x = 7 + 4√3 ---( 1 )
xy = 1 ( given )
y = 1/x = 1/ ( 7 + 4√3 )
= ( 7 - 4√3 ) / [ (7+4√3)(7-4√3)]
= ( 7 - 4√3 ) /[ 7² - ( 4√3 )² ]
= ( 7 - 4√3) / ( 49 - 48 )
= 7 - 4√3 ----( 2 )
Now ,
1/x² + 1/y²
= ( y² + x² ) / x² y²
= ( x² + y² ) / ( xy )²
= [(7+4√3)²+(7-4√3)²]/[(7+4√3)(7-4√3)]²
= 2[ 7² + ( 4√3)² ]/1
= 2[ 49 + 48 ]
= 2 × 97
= 194
I hope this helps you.
: )
Answered by
0
Answer:
194 is your answer
please mark me as brainliest
Similar questions