If x = 7 - 4√3 , find the value of x + 1 /x
Answers
Answer:
answer for the given problem is
Answer:
Answer is 4
Step-by-step explanation:
Given : x = 7- 4√3, therefore, 1/x = 1/(7- 4√3)
Given : x = 7- 4√3, therefore, 1/x = 1/(7- 4√3)=> 1/x = 1* (7+ 4√3)/(7- 4√3)*(7+ 4√3)
Given : x = 7- 4√3, therefore, 1/x = 1/(7- 4√3)=> 1/x = 1* (7+ 4√3)/(7- 4√3)*(7+ 4√3)=> 1/x = (7+ 4√3)/(7² - 4² * 3)
Given : x = 7- 4√3, therefore, 1/x = 1/(7- 4√3)=> 1/x = 1* (7+ 4√3)/(7- 4√3)*(7+ 4√3)=> 1/x = (7+ 4√3)/(7² - 4² * 3)=> 1/x = (7+ 4√3)/(49 - 48)
Given : x = 7- 4√3, therefore, 1/x = 1/(7- 4√3)=> 1/x = 1* (7+ 4√3)/(7- 4√3)*(7+ 4√3)=> 1/x = (7+ 4√3)/(7² - 4² * 3)=> 1/x = (7+ 4√3)/(49 - 48)=> 1/x = (7+ 4√3)
=> x + 1/x = 7- 4√3 + 7+ 4√3
=> x + 1/x = 7- 4√3 + 7+ 4√3=> x + 1/x = 14 - - - - (i)
Now, (√x + 1/√x )² = x + 1/x + 2* √x * 1/√x
Now, (√x + 1/√x )² = x + 1/x + 2* √x * 1/√x=> (√x + 1/√x )² = x + 1/x + 2
Now, (√x + 1/√x )² = x + 1/x + 2* √x * 1/√x=> (√x + 1/√x )² = x + 1/x + 2=> (√x + 1/√x )² = 14 + 2
Now, (√x + 1/√x )² = x + 1/x + 2* √x * 1/√x=> (√x + 1/√x )² = x + 1/x + 2=> (√x + 1/√x )² = 14 + 2=> (√x + 1/√x ) = √16 - - {considering only positive value}
Now, (√x + 1/√x )² = x + 1/x + 2* √x * 1/√x=> (√x + 1/√x )² = x + 1/x + 2=> (√x + 1/√x )² = 14 + 2=> (√x + 1/√x ) = √16 - - {considering only positive value}=> √x + 1/√x = 4 ==> (Ans)