Math, asked by prasanth1992, 1 year ago

If x=7-4√3 find the value of √x+1/√x
A. O
B. 1
C. 4
D. -4​

Answers

Answered by IamIronMan0
0

Answer:

C

Step-by-step explanation:

Note that

(7 + 4 \sqrt{3} )(7 - 4 \sqrt{3} ) \\  =  {7}^{2}  - (4 \sqrt{3} ) {}^{2}  \\  = 49 - 48 \\  = 1 \\  \\ so \\  \\  \frac{1}{7 - 4 \sqrt{3} }  = 7 + 4 \sqrt{3}

Also

7  \pm 4 \sqrt{3}  \\   \\ = 3 + 4 \pm 2(2)( \sqrt{3} ) \\  \\  = ( \sqrt{3} ) {}^{2}  +  {2}^{2} \pm2(2) (\sqrt{3} ) \\  \\  = (2\pm \sqrt{3} ) {}^{2}

So

 \sqrt{x}  +  \frac{1}{ \sqrt{x} }  \\  \\  =  \sqrt{7 - 4 \sqrt{3} }   + \frac{1}{\sqrt{7 - 4 \sqrt{3} } }   \\  \\  = \sqrt{7 - 4 \sqrt{3} }  + \sqrt{7  + 4 \sqrt{3} }  \\  \\  =  \sqrt{(2  -   \sqrt{ 3}) {}^{2}  }  +  \sqrt{(2 +  \sqrt{3} ) {}^{2} }  \\  \\  = 2 -  \sqrt{3}  + 2 +  \sqrt{3}  \\  \\  = 4

Similar questions