If x=7+4√3, find the value of (x=1by√x)
Answers
Answered by
3
I think you want
√x + 1/√x = ?
x = 7 + 4√3
1/x = 1/(7 + 4√3)
= (7 - 4√3)/(7 + 4√3)(7 - 4√3)
= (7 -4√3)/{7² -(4√3)²}
=( 7 - 4√3)/(49 - 48 )
= (7 - 4√3)
hence, 1/x = 7 - 4√3
so, x + 1/x = ( 7 + 4√3) + ( 7 -4√3) = 14
then, (√x + 1/√x)² -2 = x + 1/x
( √x + 1/√x)² -2= 14
(√x + 1/√x)²= 16
take square root both sides,
(√x +1/ √x) = 4
√x + 1/√x = ?
x = 7 + 4√3
1/x = 1/(7 + 4√3)
= (7 - 4√3)/(7 + 4√3)(7 - 4√3)
= (7 -4√3)/{7² -(4√3)²}
=( 7 - 4√3)/(49 - 48 )
= (7 - 4√3)
hence, 1/x = 7 - 4√3
so, x + 1/x = ( 7 + 4√3) + ( 7 -4√3) = 14
then, (√x + 1/√x)² -2 = x + 1/x
( √x + 1/√x)² -2= 14
(√x + 1/√x)²= 16
take square root both sides,
(√x +1/ √x) = 4
Answered by
3
Hey mate !
_______________________
Given :
x = 7 + 4√3
To find :
√x + 1 / √x
Solution :
x = 7 + 4√3
⇒ x = 4 + 3 + 4√3
⇒ x = 2² + √3² + 2 × 2 × √3
⇒ x = ( 2 + √3)²
⇒ √x = 2 + √3
Now,
1 / √x = 1 / 2 + √3 × 2 - √3 / 2 - √3
⇒ 1 / √x = 2 - √3 / 2² - √3²
⇒ 1 / √x = 2 - √3 / 4 - 3
⇒ 1 / √x = 2 - √3
Again,
√x + 1 / √x = 2 + √3 + 2 - √3
⇒ √x + 1 / √x = 2 + 2
⇒ √x + 1 / √x = 4
Hence,
√x + 1 / √x = 4
_______________________
Thanks for the question!
☺️☺️☺️
_______________________
Given :
x = 7 + 4√3
To find :
√x + 1 / √x
Solution :
x = 7 + 4√3
⇒ x = 4 + 3 + 4√3
⇒ x = 2² + √3² + 2 × 2 × √3
⇒ x = ( 2 + √3)²
⇒ √x = 2 + √3
Now,
1 / √x = 1 / 2 + √3 × 2 - √3 / 2 - √3
⇒ 1 / √x = 2 - √3 / 2² - √3²
⇒ 1 / √x = 2 - √3 / 4 - 3
⇒ 1 / √x = 2 - √3
Again,
√x + 1 / √x = 2 + √3 + 2 - √3
⇒ √x + 1 / √x = 2 + 2
⇒ √x + 1 / √x = 4
Hence,
√x + 1 / √x = 4
_______________________
Thanks for the question!
☺️☺️☺️
Similar questions