Math, asked by piyush7712, 1 year ago

if x=7+4√3, find xsq.+1/xsq. and xcube+1/xcube​

Answers

Answered by ishansrivastav24
2

Answer:

x { }^{2}  +  \frac{1}{x {}^{2} } + 2 = (x +  \frac{1}{x}  ) {}^{2}  \\ x {}^{2}  +  \frac{1}{x {}^{2} }  = (7 + 4 \sqrt{3 }  +  \frac{1}{7 + 4 \sqrt{3} } ) {}^{2}  - 2 \\ x {}^{2}  +  \frac{1}{x {}^{2} } = ( \frac{49 + 48 + 56 \sqrt{3} + 1 }{7 + 4 \sqrt{3} } ) {}^{2} - 2 \\ x {}^{2}  +  \frac{1}{x {}^{2} }   = ( \frac{98 + 56 \sqrt{3} }{7 + 4 \sqrt{3} } ) {}^{2}  - 2 \\ x {}^{2}   +  \frac{1}{x {}^{2} }  = (14) {}^{2}  - 2 \\ x {}^{2} +  \frac{1}{x {}^{2} }   = 194

Half of the question is solved the remaining you should solve by using identity of

(x+1/x)^3 =x^3 +1/x^3 + 3(x)(1/x)(x+1/x)

Similar questions