Math, asked by agilaagi441, 5 months ago


If x=(7+4√3), then find the value of the expression x + 1/x​

Answers

Answered by brainlyofficial11
4

Answer :-

we have,

  • x = 7 + 4√3

then,

 \bold{ \frac{1}{x}  =  \frac{1}{7 + 4 \sqrt{3} }}  \\  \\  \bold{: \implies \frac{1 \times 7 - 4 \sqrt{3} }{7 + 4 \sqrt{3}   \times 7 - 4 \sqrt{3} }  } \\  \\  \bold{: \implies  \frac{7 - 4 \sqrt{3} }{ {(7)}^{2}  -  {(4 \sqrt{3}) }^{2} } }   \:  \:  \:  \: \:   \:  \:  \:  \:  \:  \: \\  \\  \bold{: \implies  \frac{7 - 4 \sqrt{3} }{49 -48 } } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{: \implies  \frac{7 - 4 \sqrt{3} }{1}   } \:  \:  \:  \:  \:  \:  \:   \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{: \implies   \boxed{ \bold{\frac{1}{x} = 7 - 4 \sqrt{3}  }}}     \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

now,

 \bold{x +  \frac{1}{x}  = 7  + \cancel{ 4 \sqrt{3} } + 7 - \cancel{ 4 \sqrt{3} }} \\  \\  \bold{: \implies 7 + 7 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{ :  \implies 14} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

hence, value of x + 1/x is 14

Similar questions