Math, asked by tzaphkielsama, 6 months ago


If x = 7+4√3 then find the value of x+1÷x
PLZ TELL WITH EXPLANATION THIS IS FOR TEST​

Answers

Answered by Anonymous
3

Solution:-

Given:-

 \rm \to \: x = 7 + 4 \sqrt{3}

To find :-

 \rm \to \: x +  \dfrac{1}{x}

Now put the value on given equation

 \rm \to \: 7 + 4 \sqrt{ 3 } +  \dfrac{1}{7 + 4 \sqrt{3} }

Now taking Lcm

 \rm \to \:  \dfrac{(7 + 4 \sqrt{3} )(7 + 4 \sqrt{3} ) + 1}{7 + 4 \sqrt{3} }

 \to \rm \:  \dfrac{(7 + 4 \sqrt{3} ) {}^{2}  + 1  }{7 + 4 \sqrt{3} }

Use this identity

 \rm \to \: (a + b) {}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

We get

 \rm \to \:  \dfrac{ {7}^{2}  + (4 \sqrt{3} ) {}^{2} + 2 \times 7 \times 4 \sqrt{3}  + 1 }{7 + 4 \sqrt{3} }

 \rm \to \:  \dfrac{49 + 48 + 56 \sqrt{3} + 1 }{7 + 4 \sqrt{3} }

 \rm \to \:  \dfrac{49 + 49 + 56 \sqrt{3} }{7 + 4 \sqrt{3} }

 \rm \to \:  \dfrac{98 + 56 \sqrt{3} }{7 + 4 \sqrt{3} }

 \rm \to \:  \dfrac{14(7 + 4 \sqrt{3} )}{7 + 4 \sqrt{3} }

 \rm \to \:  \dfrac{14 \cancel{(7 + 4 \sqrt{3} )}}{ \cancel{7 + 4 \sqrt{3} }}

 \rm \to \: 14

So Answer is 14

Similar questions