if x=(7+4√3), then the value of x^2+1/x^2 is
Answers
Answered by
0
Answer:
the answer is 194
Step-by-step explanation:
Answered by
1
Hi ☺ !!
Here is your answer :
Given : X = ( 7 + 4√3 )
Therefore,
1/X = 1 / 7 + 4√3
1/ X = 1/ 7 + 4√3 × ( 7 - 4√3 ) / ( 7 - 4√3 )
1/ X = ( 7 - 4√3 ) / ( 7 + 4√3 ) ( 7 - 4√3 )
1 / X = ( 7 - 4√3 ) / ( 7)² - ( 4√3)² [ Since ( a + b ) ( a - b ) = a² - b² ]
1 / X = ( 7 - 4√3 ) / 49 - 48
1 / X = ( 7 - 4√3 ) / 1
1 / X = 7 - 4√3.
Therefore,
x + 1 / x = 7 + 4√3 + 7 - 4√3
x + 1 / x = 14.
On squaring both sides , we get
( x + 1/x)² = 14²
x² + 1/x² + 2 x × 1/x = 196
x² + 1/x² + 2 = 196
x² + 1/x² = 196 - 2
x² + 1/x² = 194.
Hence,
x² + 1/x² = 194.
☺ Hope it will help you ☺
By Rishi403
#BeBrainly
Here is your answer :
Given : X = ( 7 + 4√3 )
Therefore,
1/X = 1 / 7 + 4√3
1/ X = 1/ 7 + 4√3 × ( 7 - 4√3 ) / ( 7 - 4√3 )
1/ X = ( 7 - 4√3 ) / ( 7 + 4√3 ) ( 7 - 4√3 )
1 / X = ( 7 - 4√3 ) / ( 7)² - ( 4√3)² [ Since ( a + b ) ( a - b ) = a² - b² ]
1 / X = ( 7 - 4√3 ) / 49 - 48
1 / X = ( 7 - 4√3 ) / 1
1 / X = 7 - 4√3.
Therefore,
x + 1 / x = 7 + 4√3 + 7 - 4√3
x + 1 / x = 14.
On squaring both sides , we get
( x + 1/x)² = 14²
x² + 1/x² + 2 x × 1/x = 196
x² + 1/x² + 2 = 196
x² + 1/x² = 196 - 2
x² + 1/x² = 194.
Hence,
x² + 1/x² = 194.
☺ Hope it will help you ☺
By Rishi403
#BeBrainly
Similar questions