if x= 7+4 root 3 and xy= 1 find 1/x^2+1/y^2
Answers
Answered by
4
Required Answer:-
Given:
- x = 7 + 4√3
- xy = 1
To Find:
- The value of 1/x² + 1/y²
Solution:
Given that,
→ x = 7 + 4√3
As xy = 1,
→ y = 1/x
→ y² = 1/x²
→ 1/y² = x²
So,
→ 1/x² + 1/y² is same as x² + 1/x²
Calculating the value of 1/x,..
→ 1/x = 1/(7 + 4√3)
→ 1/x = 1 × (7 - 4√3)/[(7 + 4√3)(7 - 4√3)]
→ 1/x = (7 - 4√3)/(7² - (4√3)²)
→ 1/x = (7 - 4√3)/(49 - 48)
→ 1/x = 7 - 4√3
So, the value of 1/x² + 1/y² will be,
= 1/x² + x² (As x = 1/y)
= x² + 1/x²
= (7 + 4√3)² + (7 - 4√3)²
Applying identity (a + b)² = a² + 2ab + b² and (a - b)² = a² - 2ab + b², we get,
= (7)² + 2 × 7 × 4√3 + (4√3)² + (7)² - 2 × 7 × 4√3 + (4√3)²
= (7)² + (7)² + (4√3)² + (4√3)²
= 49 + 49 + 48 + 48
= 98 + 96
= 194
→ 1/x² + 1/y² = 194
Answer:
- 1/x² + 1/y² = 194
•••♪
Similar questions