Math, asked by rohityadav9543, 1 year ago

If x=7+4 root 3 find the value of (x root +1/x root) ​

Attachments:

Answers

Answered by Anonymous
7

ANSWER:-

Given:

If x= 7 + 4√3

To find:

Find the value of,

( \sqrt{x}  +  \frac{1}{ \sqrt{x} } )

Solution:

x = 7+ 4√3

=) x = 4+3 + 2×2× √3

=) x= (√4)² + (√3)² + 2× 2 ×√3

=) x = (2)² + (√3)² + 2× 2 ×√3 [In (a+b)²]

=) x = (2 + √3)²

=) √x = 2+√3

Now,

Putting the value in √x + 1/√x we have;

By rationalizing method;

 =  >  \frac{1}{  \sqrt{x}  }   =  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\  =  >  \frac{2 -  \sqrt{3} }{ {2}^{2} - 3 }  \\  \\  =  >  \frac{2 -  \sqrt{3} }{4 -  3}  \\  \\  = >   \frac{2 -  \sqrt{3} }{1}  = >  2 -  \sqrt{3}

Therefore,

√x + 1/√x

=) 2+ √3+ 2 -√3

=) 2+ 2

=) 4. [answer]

Hence,

4 is the required value.

Hope it helps ☺️

Answered by weekendgaming56
0

Answer:

Thank you for the question and answer

Step-by-step explanation:

Similar questions