Math, asked by Yanika000, 1 year ago

If x=7+4 root 3 ,then find the value of root x +1upon root x

Answers

Answered by ArchitectSethRollins
8
Hi friend✋✋✋✋
----------------
Your answer
---------------------

x = 7 + 4√3

 \frac{1}{x}  =  \frac{1}{7 + 4 \sqrt{3} }  \\  \\  =  >  \frac{1}{(7 + 4 \sqrt{3} )}  \times  \frac{(7 - 4 \sqrt{3} )}{(7 - 4 \sqrt{3}) }  \\  \\  =  >  \frac{(7 - 4 \sqrt{3)} }{(7) {}^{2}  - (4 \sqrt{3}) {}^{2}  }  \\  \\  =  >  \frac{7 - 4 \sqrt{3} }{49 - 48}  \\  \\  =  >  \frac{7 - 4 \sqrt{3} }{1}  \\  =  >  \frac{1}{x}  = 7 - 4 \sqrt{3}
Now,
----------

x +  \frac{1}{x}  = 7 + 4 \sqrt{3}  + 7 - 4 \sqrt{3}  \\  \\  =  > x +  \frac{1}{x}  = 14 \\  \\  =  > x +  \frac{1}{x}  + 2 = 14 + 2 (adding \: 2 \: on \: both \: sides) \\  \\  =  > ( \sqrt{x}  +  \frac{1}{ \sqrt{x} }  ) {}^{2}  = 16 \\  \\  =  >  \sqrt{x}  +  \frac{1}{ \sqrt{x} }  =  \sqrt{16}  \\  \\  =  >  \sqrt{x}  +  \frac{1}{ \sqrt{x} }  = 4
HOPE IT HELPS

Anonymous: Excellent archi
ArchitectSethRollins: thank uh ,(^_^)
Answered by YASH3100
11
HEYA!!!

--------------------

HERE IS YOUR ANSWER...

GIVEN :   x = 7 + 4 (root 3)

TO FIND :   x + 1/x 

SOLUTION :

SINCE,

=> x = 7 + 4 (root 3)

THEREFORE,

=> 1/x = (1) / [7 + 4 (root 3)]

NOW, RATIONALIZING THE DENOMINATOR,

=> 1/x = (1) / [7 + 4 (root 3)] * [7 - 4 (root 3)] / [7 - 4 (root 3)]

=> [7 - 4 (root 3)] / { [7 + 4 (root 3)] * [7 - 4 (root 3)] }

=> [7 - 4 (root 3)] / [49 - 48]

=> [7 - 4 (root 3)] / (1)

THEREFORE,

=> 1/x = [7 - 4 (root 3)] 

THUS,

=> x + 1/x = [7 + 4 (root 3)] + [7 - 4 (root 3)]

=> x + 1/x = 14 

NOW,

ADDING "2" ON BOTH SIDES.

=> x + 1/x + 2 = 14 + 2

=> x + 1/x + 2 = 16

=> [(root x) + (1) / (root x)] ^ 2 = 16

=> (root x) + 1 / (root x) = (root 16)

=> (root x) +1 / (root x) = 4   (ANS)

---------------------------------------------------------------

HOPE IT HELPS YOU,
THANK YOU.



jerri: BRAINLY itself has latex system
YASH3100: but thanks for your suggestion :)
YASH3100: where brother?
jerri: use it like Architectsethrollins used
jerri: this will mke your answer better
YASH3100: yeah thats true but i couldn't find it over here
Anonymous: great hands for this hard work bro!!
YASH3100: hehehe thank you sis :)
Anonymous: Gr8 answer bro
YASH3100: Thank you so much sissy.......well pls do check my other answers as well :)
Similar questions