Math, asked by suhani8636, 1 year ago

if x = 7 + 4 root 3 then find the value of x plus one upon x​

Answers

Answered by shruti1859
0

this is the required answer..

Attachments:
Answered by Anonymous
3

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \huge\mathfrak{\bf{{\underline{\underline{\huge\mathcal{...AnsweR...}}}}}}

\underline{\large\mathcal\red{Solution}}

(:)

------

 \:  \:  \: x =  7 + 4 \sqrt{3}  \:  \:  \\ now \:  \:  \frac{1}{x}  =  \frac{1}{7 + 4 \sqrt{3} }  \\  =  >  \frac{1}{x}  =  \frac{7 - 4 \sqrt{3} }{(7 + 4 \sqrt{3})(7 - 4 \sqrt{3}  )}  \\  =  >  \frac{1}{x}  =  \frac{7 - 4 \sqrt{3} }{7 {}^{2} - (4 \sqrt{3}) {}^{2}   }  \\  =  >  \frac{1}{x}  =  \frac{7 - 4 \sqrt{3} }{49 - 48}  \\  =  >  \frac{1}{x}  =  \frac{7 - 4 \sqrt{3} }{1}  \\  =  >  \frac{1}{x}  = (7 - 4  \sqrt{3} )

therefore:

(x +  \frac{1}{x} ) = 7 + 4 \sqrt{3} + 7 - 4 \sqrt{3}   \\  =  > (x +  \frac{1}{x} ) = 14 \:  \: (answer)

\large\mathcal\red{hope\: this \: helps \:you......}

Similar questions