If x=7+48 ,find the value of x2+1/x2
Answers
Step-by-step explanation:
Step-by-step explanation:
Given : If x=7+\sqrt{48}
To find : The value of \sqrt{x}+\frac{1}{\sqrt{x}} ?
Solution :
x=7+\sqrt{48}
Write it as,
x=7+4\sqrt{3}
x=(2)^2+2\times 2\times \sqrt{3}+(\sqrt{3})^2
x=(2+\sqrt{3})^2
Now taking root both side,
\sqrt{x}=\sqrt{(2+\sqrt{3})^2}
\sqrt{x}=2+\sqrt{3} .....(1)
Now,
\frac{1}{\sqrt{x}}=\frac{1}{2+\sqrt3}
Rationalize the denominator,
\frac{1}{\sqrt{x}}=\frac{1}{2+\sqrt3}\times \frac{2-\sqrt3}{2-\sqrt3}
\frac{1}{\sqrt{x}}=\frac{2-\sqrt3}{2^2-(\sqrt3)^2}
\frac{1}{\sqrt{x}}=\frac{2-\sqrt3}{4-3}
\frac{1}{\sqrt{x}}=2-\sqrt3 ....(2)
Add (1) and (2),
\sqrt{x}+\frac{1}{\sqrt{x}}=2+\sqrt3+2-\sqrt3
\sqrt{x}+\frac{1}{\sqrt{x}}=4
Therefore, the value is \sqrt{x}+\frac{1}{\sqrt{x}}=4
#Learn more
If x=7+root 40 find the value of root x +1/root x