if x = 7 + 4root3, find rootx + 1 / rootx
Answers
Hey mate !
_______________________
Given :
x = 7 + 4√3
To find :
√x + 1 / √x
Solution :
x = 7 + 4√3
⇒ x = 4 + 3 + 4√3
⇒ x = 2² + √3² + 2 × 2 × √3
⇒ x = ( 2 + √3)²
⇒ √x = 2 + √3
Now,
1 / √x = 1 / 2 + √3 × 2 - √3 / 2 - √3
⇒ 1 / √x = 2 - √3 / 2² - √3²
⇒ 1 / √x = 2 - √3 / 4 - 3
⇒ 1 / √x = 2 - √3
Again,
√x + 1 / √x = 2 + √3 + 2 - √3
⇒ √x + 1 / √x = 2 + 2
⇒ √x + 1 / √x = 4
Hence,
√x + 1 / √x = 4
_______________________
Thanks for the question!
☺️☺️☺️
Hey mate !
_______________________
Solution :
x = 7 + 4√3
=> x = 4 + 3 + 4√3
=> x = 2² + √3² + 2 × 2 × √3
=> x = ( 2 + √3)²
=> √x = 2 + √3
Now,
1 / √x = 1 / 2 + √3 × 2 - √3 / 2 - √3
=> 1 / √x = 2 - √3 / 2² - √3²
=> 1 / √x = 2 - √3 / 4 - 3
=> 1 / √x = 2 - √3
Again,
√x + 1 / √x = 2 + √3 + 2 - √3
=> √x + 1 / √x = 2 + 2
=> √x + 1 / √x = 4
Hence,
√x + 1 / √x = 4
_______________________
Thanks for the question!
@Aaisha44 ❤️