Math, asked by Yogesha7033, 1 year ago

If x=7+5√2 then find the value of x^2+1/x^2

Answers

Answered by CaptainBrainly
34

GIVEN :

x = 7 + 5√2

TO FIND :

Value of x² + 1/x²

SOLUTION :

x = 7 + 5√2

1/x = 1/(7 + 5√2)

Rationalizing

→ 1/x = 1/(7 + 5√2) × (7 - 5√2)/(7 - 5√2)

→ 1/x = (7 - 5√2)/(49 - 50)

→ 1/x = (7 - 5√2)/- 1 = 5√2 - 7

(x + 1/x)² - 2 = x² + 1/x²

→ (7 + 5√2 + 5√2 - 7)² - 2

→ (10√2)² - 2

→ 200 - 2 = 198

x² + 1/x² = 198

Therefore, value of x² + 1/x² = 198.

Answered by Anonymous
22

\bigstar Correct Question:

  • If x = 7 + 5√2, then find the value of x² + 1/x².

\bigstar Given:

  • x = 7 + 5√2

\bigstarTo find:

  • x² + 1/x²

\bigstar Solution:

x = 7 + 5√2

So, 1/x

 =  \dfrac{1}{7 + 5 \sqrt{2} }

Now by rationalising the denominator,

 \dfrac{1(7 - 5 \sqrt{2} )}{(7 + 5 \sqrt{2} )(7 - 5 \sqrt{2} )}

 =  \dfrac{7 - 5 \sqrt{2} }{ {7}^{2}  - ( {5 \sqrt{2} )}^{2} }

(By using ( a + b ) ( a - b ) = a² - b² )

 =  \dfrac{7 - 5 \sqrt{2} }{49 - 50}

( 5√2 × 5√2 = 5 × 5 × 2 = 50 )

  = \dfrac{7 - 5 \sqrt{2} }{( - 1)}

 =  - (7 - 5 \sqrt{2} )

 =  (- 7 ) + 5 \sqrt{2}  \:  \: or \:  \: 5 \sqrt{2 }  - 7

So, x + 1/x = 5√2 - 7 + 7 + 5√2

\implies x + 1/x = 10√2

Now,

x² + 1/x² can also be written as

( x + 1/x )² - 2.

x² + 1/x² = ( 10√2 )² - 2

\implies x² + 1/x² = 200 - 2

\implies \boxed{x ^{2} \:+ \dfrac{1}{x ^{2} }\:= 198}

Answer:

\therefore x² + 1/x² = \boxed{198}

Similar questions
Math, 1 year ago