if x= √7-√5/√7+√5, y= √7+√5/√7-√5, then Find value of x^2+y^2
Answers
Answer:
ans: 142
Step-by-step explanation:
here x=1/y
x²+y²=(x+y)²-2xy
First find x+y
x+y=√7-√5/√7+√5 + √7+√5/√7-√5
=1/(√7-√5)(√7+√5) [(√7-√5)²+(√7+√5)²]
=1/7-5* ( 7+5-2*√7*√5+2*√7*√5+7+5)
=1/2*(24)=12
so x+y=12
===========================================
Now
x²+y²=(x+y)²-2xy
=12²-2*x*1/x ( as y=1/x)
=144-2
=142
============================
Value of x^2+y^2 = 142.
Step-by-step explanation:
Given :
x= √7 - √5 ÷ √7 + √5
y= √7 + √5 ÷ √7 - √5
Let a and b be the 2 numbers,
- the squares of a and b are a² and b².
- The sum of the squares of a and b is a² + b².
We may want to reap a system the use of the acknowledged algebraic identity
(a+b)² = a² + b² + 2ab.
On subtracting 2ab from each the perimeters we are able to finish that
a² + b² = (a +b)² - 2ab.
Similarly, we also can say that,
a²+ b² = (a - b)² + 2ab.
now here
- x = 1/y
let's find
- x + y
=( √7 - √5 ÷ √7 + √5) + ( √7 + √5 ÷ √7 - √5 )
= 1 /(√7 - √5) (√7 + √5)( (√7 - √5 )² + (√7 + √5)²)
= 1/7-5 × (7+5-2 × √5 +2×√7×√5+7+5)
=½ × 24
= 12
now ,
x²+y²
= (x+y)²-2xy
=12² -2x × 1/x
= 144 -2
= 142.
hence , the value of x^2+y^2 = 142
(#SPJ2)