Math, asked by bubbleAimita, 1 year ago

if x=√7/5 and 5/x=p√7 find p

Answers

Answered by hotelcalifornia
265

Answer:

The value of p in the given expression is 25/7.

To find:

The value of p in the equations x = \frac { \sqrt { 7 } } { 5 }\\ and \frac { 5 } { \mathrm { x } } = \mathrm { p } \sqrt { 7 }\\

Solution:

Given expressions are,

x = \frac { \sqrt { 7 } } { 5 }\\

and

\frac { 5 } { \mathrm { x } } = \mathrm { p } \sqrt { 7 }\\

Putting the value of x in equation 2, we get,

\begin{array} { c } { \frac { 5 } { \frac { \sqrt { 7 } } { 5 } } = p \sqrt { 7 } } \\\\ { \frac { 5 \times 5 } { \sqrt { 7 } } = p \sqrt { 7 } } \\\\ { p = \frac { 5 \times 5 } { \sqrt { 7 } \times \sqrt { 7 } } \\\\= \frac { 25 } { 7 } } \end{array}

Hence, the value of p in the given expression is 25/7.

Answered by mysticd
239

Answer:

Value \: of \: p = \frac{25}{7}

Step-by-step explanation:

 Given \: x = \frac{\sqrt{7}}{5} ---(1)

and

\frac{5}{x}=p\sqrt{7}

\implies \frac{5}{\frac{\sqrt{7}}{5}}=p\sqrt{7}

\* From (1) *\

\implies 5 \times \frac{5}{\sqrt{7}}=p\sqrt{7}

\implies 5 \times \frac{5}{\sqrt{7}} \times \frac{1}{\sqrt{7}}=p

\implies \frac{25}{7}=p

Therefore,.

Value \: of \: p = \frac{25}{7}

•••♪

Similar questions