Math, asked by Unknown000, 1 year ago

if x=7+√5 find the value of x+1/x​

Answers

Answered by Anonymous
9
\mathcal{\huge\red\star}{\red{\huge{Heymate}}}{\huge\red\star}

✶⊶⊷⊶⊷⊷⊶⊷ ❍⊷⊶⊷⊶⊷⊶⊷✶

\mathcal{\green{\huge{Answer}}}

The Solution Is As Below

as \: \: per \: \: given \\ = > x + \frac{1}{x} \\ = > \frac{ {x}^{2} + 1 }{x} \\ = > \frac{ (7 + \sqrt{5}) {}^{2} + 1 }{7 + \sqrt{5} } \\ = > \frac{49 + 5 + 14 \sqrt{5} + 1}{7 + \sqrt{5} } \\ = > \frac{55 + 14 \sqrt{5} }{7 + \sqrt{5} } \\ = > \frac{55 + 14 \sqrt{5} }{7 + \sqrt{5} } \times \frac{7 - \sqrt{5} }{7 - \sqrt{5} } \\ = > \frac{385 - 55 \sqrt{5} + 98 \sqrt{5} - 70}{49 - 5} \\ = > \frac{315 + 43 \sqrt{5} }{44}

So that is the answer

❤Thanks For Asking \underline\bold{ UNKNOWN}

✶⊶⊷⊶⊷⊷⊶⊷ ❍⊷⊶⊷⊶⊷⊶⊷✶

\mathcal{\red{\huge {Hope\:it\:helps}}}

⍖━━━━━━━━━━⍖

\mathbb{\huge{\blue{R-K}}}

\mathcal{\huge{\green{Plz_-Follow_-Me}}}

\huge \red{ \boxed{ \bf{ \ulcorner{ \mid{ \overline{ \underline{ANSWER}}}}}\mid }}

\huge \pink{ \mid{ \overline{ \underline{ \mathbb{GI} \mathit{V}\mathfrak{EN}}}} \mid}
Answered by DeviIQueen
10

Step-by-step explanation:

x=7+√5

1/x=1/7+√5

1/x= 7-√5

(7+√5)(7-√5)

1/x=7-√5

44

now put value of 1/x then and

putting value of x=7+√5 then

7+√5+7-√5

44

308+44√5+7-√5

44

301+43√5

44

Similar questions