Math, asked by Unknown000, 1 year ago

if x=7+√5 find the value of x+1/x

full explanation needed​

Answers

Answered by Anonymous
13

Answer:

\large \text{$(x+\dfrac{1}{x})= \dfrac{301+43\sqrt{5}}{44}$}

Step-by-step explanation:

Given :

\large \text{$x=7+\sqrt5$}

Now taking reciprocal of both side

\large \text{$\dfrac{1}{x}=\dfrac{1}{7+\sqrt5}$}

Now rationalize the denominator

\large \text{$\dfrac{1}{x}=\dfrac{1}{7+\sqrt5}\times\dfrac{7-\sqrt5}{7-\sqrt5} $}\\\\\\\large \text{$\dfrac{1}{x}=\dfrac{7-\sqrt5}{49-5}$}\\\\\\\large \text{$\dfrac{1}{x}=\dfrac{7-\sqrt5}{44}$}\\\\\\\large \text{Here we used identity $a^2-b^2=(a+b)(a-b)$}

We have to find  \large \text{$(x+\dfrac{1}{x})$}

Now adding both

\large \text{$x+\dfrac{1}{x}= 7+\sqrt5+\dfrac{7-\sqrt5}{44}$}\\\\\\\large \text{$x+\dfrac{1}{x}= \dfrac{7\times44+\sqrt5\times44+7-\sqrt5}{44}$}\\\\\\\large \text{$x+\dfrac{1}{x}= \dfrac{308-7+44\sqrt{44}-\sqrt5}{44}$}\\\\\\\large \text{$x+\dfrac{1}{x}= \dfrac{301+43\sqrt{5}}{44}$}

Thus we get answer.

Attachments:
Answered by DeviIQueen
10

Step-by-step explanation:

x=7+√5

1/x=1/7+√5

1/x= 7-√5

(7+√5)(7-√5)

1/x=7-√5

44

now put value of 1/x then and

putting value of x=7+√5 then

7+√5+7-√5

44

308+44√5+7-√5

44

301+43√5

44

Similar questions