Math, asked by mantrapatel111206, 1 month ago

if X = √7+√6 then find x - 1/x​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

x =  \sqrt{7}  +  \sqrt{6}

Now,

 \frac{1}{x}  =   \frac{1}{ \sqrt{7}  +  \sqrt{6} } \\

  \implies \: \frac{1}{x}  =   \frac{( \sqrt{7} -  \sqrt{6} ) }{ (\sqrt{7}  +  \sqrt{6} )( \sqrt{7}  -  \sqrt{6} )} \\

  \implies \: \frac{1}{x}  =   \frac{( \sqrt{7} -  \sqrt{6} ) }{ 7   -  6 } \\

  \implies \: \frac{1}{x}  =   \frac{( \sqrt{7} -  \sqrt{6} ) }{1} \\

  \implies \: \frac{1}{x}  =   \sqrt{7} -  \sqrt{6}  \\

Now,

x +  \frac{1}{x}  =  \sqrt{7}  +  \sqrt{6}  +  \sqrt{7}  -  \sqrt{6}  \\

 \implies \: x +  \frac{1}{x}  =  \sqrt{7}  +  \sqrt{7}   \\

 \implies \: x +  \frac{1}{x}  =  2\sqrt{7}    \\

Similar questions