Math, asked by reenadkjain, 7 months ago

if x =7+root 48 find the value of x square + 1 upon x square​

Answers

Answered by sshobhit803
2

Step-by-step explanation:

x= 7+√48

x^2 = (7)^2+(√48)^2 + 2× 7× √48

x^2= 49+48+14√48

x^2= 97+14√48

1/x^2= 97-14√48

so

X^2+1/X^2 = 97+14√48 + 97-14√48

= 97+97

= 194

Answered by NirmalPandya
0

The value of the expression x^{2} +\frac{1}{x^{2} } is 194.

Given,

The value of x: 7+\sqrt{48}.

To Find,

The value of the expression: x^{2} +\frac{1}{x^{2} }.

Solution,

The method of finding the value of the given expression is as follows -

First, we will compute the value of x^{2}.

x^{2} =(7+\sqrt{48})^2=7^2+(\sqrt{48} )^2+2*7*\sqrt{48}

=49+48+14\sqrt{16*3}=97+14*4\sqrt{3}=97+56\sqrt{3}.

Now we will compute the value of the expression x^{2} +\frac{1}{x^{2} }.

x^{2} +\frac{1}{x^{2} }=97+56\sqrt{3}+ \frac{1}{97+56\sqrt{3}}

=97+56\sqrt{3}+\frac{97-56\sqrt{3}}{(97+56\sqrt{3})(97-56\sqrt{3})} [To rationalize the denominator]

=   97+56\sqrt{3}+\frac{97-56\sqrt{3}}{(97)^2-(56\sqrt{3} )^2} [Since (a+b)(a-b)=a^2-b^2]

=97+56\sqrt{3}+\frac{97-56\sqrt{3}}{9409-9408} =97+56\sqrt{3}+\frac{97-56\sqrt{3}}{1}

97+56\sqrt{3}+97-56\sqrt{3}=97+97=194.

Hence, the value of the expression x^{2} +\frac{1}{x^{2} } is 194.

#SPJ2

Similar questions