If x=81 and y=log 4 to the base 3 then find the value of x power y.
Answers
Answered by
3
hey arpana here is your answer.
Theory:
![{y}^{ log_{n}(x) } ={x}^{ log_{n}(y) } {y}^{ log_{n}(x) } ={x}^{ log_{n}(y) }](https://tex.z-dn.net/?f=%7By%7D%5E%7B+log_%7Bn%7D%28x%29+%7D+%3D%7Bx%7D%5E%7B+log_%7Bn%7D%28y%29+%7D)
Solution:
![x = 81 \\ y = log_{3}(4) x = 81 \\ y = log_{3}(4)](https://tex.z-dn.net/?f=x+%3D+81+%5C%5C+y+%3D+log_%7B3%7D%284%29+)
![{x}^{y} = {81}^{ log_{3}(4) } = {4}^{ log_{3}(81) } = {4}^{ log_{3}( {3}^{4} ) } = {4}^{4 log_{3}(3) } = {4}^{4} = 256 {x}^{y} = {81}^{ log_{3}(4) } = {4}^{ log_{3}(81) } = {4}^{ log_{3}( {3}^{4} ) } = {4}^{4 log_{3}(3) } = {4}^{4} = 256](https://tex.z-dn.net/?f=+%7Bx%7D%5E%7By%7D+%3D+%7B81%7D%5E%7B+log_%7B3%7D%284%29+%7D+%3D+%7B4%7D%5E%7B+log_%7B3%7D%2881%29+%7D+%3D+%7B4%7D%5E%7B+log_%7B3%7D%28+%7B3%7D%5E%7B4%7D+%29+%7D+%3D+%7B4%7D%5E%7B4+log_%7B3%7D%283%29+%7D+%3D+%7B4%7D%5E%7B4%7D+%3D+256)
hope you like it..
please mark me brainliest if you found it useful.
Theory:
Solution:
hope you like it..
please mark me brainliest if you found it useful.
arpanaa:
i need till last answer plz help me
Answered by
0
Step-by-step explanation:
Theory:
{y}^{ log_{n}(x) } ={x}^{ log_{n}(y) }y
log
n
(x)
=x
log
n
(y)
Solution:
\begin{gathered}x = 81 \\ y = log_{3}(4) \end{gathered}
x=81
y=log
3
(4)
{x}^{y} = {81}^{ log_{3}(4) } = {4}^{ log_{3}(81) } = {4}^{ log_{3}( {3}^{4} ) } = {4}^{4 log_{3}(3) } = {4}^{4} = 256x
y
=81
log
3
(4)
=4
log
3
(81)
=4
log
3
(3
4
)
=4
4log
3
(3)
=4
4
=256
hope you like it..
please mark me brainliest if you found it useful.
Similar questions
Chemistry,
8 months ago
English,
8 months ago
English,
8 months ago
Physics,
1 year ago
Social Sciences,
1 year ago