Math, asked by helianilthomas, 8 months ago

If x=9 +4√5 ; find Set √x+1÷√x

Answers

Answered by omprakashyadavkone
0

Answer:

tittitcv rryufi cicifig

 \sqrt[6115 {46163y4) { \frac{ \frac{ {y \sqrt{ \frac{1222}{?} } }^{?} }{?} }{?} }^{2} }^{2} ]{?}

Answered by Anonymous
1

 \bf \huge \underbrace{Answer} \\  \\ x = 9 + 4 \sqrt{5}  \\  \\  \sqrt{x}  =  \sqrt{9 + 4 \sqrt{5} }  \\  \\  \sqrt{x}  =  \sqrt{5 + 4 + 4 \sqrt{5} }  \\  \\  \sqrt{x}  =  \sqrt{ {( \sqrt{5} )}^{2} +  {2}^{2} + 2 \times  \sqrt{5}   \times 2 }  \\  \\  \sqrt{x}  =  \sqrt{5}  + 2 \\  \\ and \:  \:  \\  \\  \frac{1}{ \sqrt{x} }  =  \frac{1}{ \sqrt{5}  + 2}  \\  \\  \frac{1}{ \sqrt{x} }  =  \frac{1}{ \sqrt{5}  + 2}  \times  \frac{ \sqrt{5}  - 2}{ \sqrt{5} - 2 }  \\  \\  \frac{1}{ \sqrt{x} }  =  \frac{ \sqrt{5}  - 2}{ {( \sqrt{5} })^{2}  -  {(2)}^{2} }  \\  \\  \frac{1}{ \sqrt{x} }  =  \frac{ \sqrt{5}  - 2}{5 - 4}  \\  \\  \frac{1}{ \sqrt{x} }  =  \sqrt{5}  - 2 \\  \\ now \\  \\  \sqrt{x}   + \frac{1}{ \sqrt{x} }  =  \sqrt{5}  + 2  +   \sqrt{5}  - 2 = 2 \sqrt{5}

Similar questions