Math, asked by deepa4578, 1 year ago

if x=9+4√5,find the value of√x-1/√x​

Answers

Answered by LovelyG
11

Answer:

4

Step-by-step explanation:

Given that ;

 \sf x = 9 + 4 \sqrt{5}

It can be written as ;

\implies \sf x = 5 + 4 + 4 \sqrt{5}  \\  \\ \implies \sf x = ( \sqrt{5} ) {}^{2}  + (2) {}^{2}  + 2 \times 2 \times  \sqrt{5}  \\  \\ \implies \sf x = ( \sqrt{5}  + 2) {}^{2}  \\  \\ \implies \sf  \sqrt{x }  =  \sqrt{5}  + 2

Now, find the value of \sf \dfrac{1}{\sqrt{x}},

 \sf \frac{1}{ \sqrt{x} }  =  \frac{1}{ \sqrt{5} + 2 }  \\  \\ \implies \sf  \frac{1}{ \sqrt{x} }  =  \frac{1}{ \sqrt{5}  + 2}  \times  \frac{ \sqrt{5} - 2 }{ \sqrt{5} - 2 }  \\  \\ \implies \sf  \frac{1}{ \sqrt{x} }  =  \frac{ \sqrt{5}  - 2}{( \sqrt{5}) {}^{2} - (2) {}^{2}}  \\  \\ \implies \sf  \frac{1}{ \sqrt{x} }   =  \frac{ \sqrt{5}  - 2}{5 - 4}  \\  \\ \implies \sf  \frac{1}{ \sqrt{x} }   =   \sqrt{5}  - 2

Now,

\implies \sf  \sqrt{x}   - \frac{1}{ \sqrt{x} }   =  \sqrt{5}  + 2 -  \sqrt{5} + 2 \\  \\ \implies \sf  \sqrt{x} - \frac{1}{ \sqrt{x} }   =2+2 \\  \\ \boxed{ \bf   \sqrt{x}  - \frac{1}{ \sqrt{x} }   = 4 }

Answered by Anonymous
24

x = 9 + 4√5

__________ [GIVEN]

• We have to find the value of \sqrt{x}  \:  -  \:  \dfrac{1}{ \sqrt{x} }

______________________________

x = 9 + 4√8

Now.. write 9 in terms of 5 and 4. We can write it like..

=> x = 4 + 5 + 4√5

But we want √5. So, we can also write it like

=> x = (2)² + (√5)² + 4√5

=> x = (2)² + (√5)² + 2 × 2√5

(a + b)² = a² + b² + 2ab

=> x = (2 + √5)²

=> √x = 2 + √5 _______ (eq 1)

______________________________

\dfrac{1}{\sqrt{x} } = \dfrac{1}{2\:+\:\sqrt{5} }

=> \dfrac{1}{2\:+\:\sqrt{5} } × \dfrac{2 \:  -  \:  \sqrt{5} }{2\: - \:\sqrt{5} }

(a - b) (a + b) = a² - b²

=> \dfrac{2\:  -  \:  \sqrt{5} }{ {2}^{2} \: - \: { (\sqrt{5}) }^{2}  }

=> \dfrac{2\:  -  \:  \sqrt{5} }{ 4\:-\:5 }

=> √5 - 2 _______ (eq 2)

_______________________________

\sqrt{x}  \:  -  \:  \dfrac{1}{ \sqrt{x} }

=> 2 + √5 - (√5 - 2) [From (eq 1) and (eq 2)]

=> 2 + √5 - √5 + 2

=> 4

________________________________

\sqrt{x}  \:  -  \:  \dfrac{1}{ \sqrt{x} } is 4

____________ [ANSWER]

Similar questions