Math, asked by advaith2335, 9 months ago

If x = 9 + 4√5 , find the value of x + 1/x

Answers

Answered by sadanand58
0

Answer:

 \frac{10 + 4 \sqrt{5} }{9 + 4  \sqrt{5} } }

Step-by-step explanation:

look the picture

Attachments:
Answered by priyel
3

Answer:

 \huge\bf{18}

Step-by-step explanation:

x = 9 + 4 \sqrt{5}  \\  \implies \: x +  \frac{1}{x}  = 9 + 4 \sqrt{5} +  \frac{1}{9 + 4 \sqrt{5} }   \\  \\ \implies \: x +  \frac{1}{x}  =  \frac{ {(9 + 4 \sqrt{5} })^{2}  + 1}{9 + 4 \sqrt{5} }  \\  \\ \implies \: x +  \frac{1}{x}  =  \frac{81 + 72 \sqrt{5}  + 80 + 1}{9 + 4 \sqrt{5} } \\  \\ \implies \: x +  \frac{1}{x}  =  \frac{162 + 72 \sqrt{5} }{9 + 4 \sqrt{5} }  \\  \\\implies \: x +  \frac{1}{x}   =  \frac{18{( \cancel{9 + 4 \sqrt{5}})}}{ \cancel{9 + 4 \sqrt{5} }}  \\  \\ \implies \: x +  \frac{1}{x}  = 18

Similar questions