Math, asked by JaiPalani, 1 year ago

if x = 9 - 4√5 find the value of √x – 1/√x

Answers

Answered by BEJOICE
5

given \:  \: x = 9 - 4 \sqrt{5} \\ so \:  \:  \frac{1}{x}   =  \frac{1}{9 - 4 \sqrt{5}}  =  \frac{9  + 4 \sqrt{5}}{(9 - 4 \sqrt{5})(9  +  4 \sqrt{5})}  \\  =  \frac{9  +  4 \sqrt{5}}{81 - 80}  = 9  +  4 \sqrt{5} \\  \\ therefore \:  \: x +  \frac{1}{x}  \\  = (9 - 4 \sqrt{5}) + (9  +  4 \sqrt{5}) = 18 \\  \\  x +  \frac{1}{x}  =  {(\sqrt{x}   -   \frac{1}{ \sqrt{x} } )}^{2}   +  2 \\ 18 =  {(\sqrt{x}   -  \frac{1}{ \sqrt{x} } )}^{2}   +  2 \\  {(\sqrt{x}   -   \frac{1}{ \sqrt{x} } )}^{2}   = 18  -  2 = 16 \\ \sqrt{x}   -   \frac{1}{ \sqrt{x} }  =  \sqrt{16}  =   4 \:  \: or \:  \:  - 4
Similar questions