Math, asked by ayaanmansoori0805, 7 months ago

If x = 9 + 4√5, find the value of x²+1/x²​

Answers

Answered by ghargevinayak
0

If x = 9 + 4√5, find the value of x²+1/x²See answers. Log in to add comment. Answer. 4.7/5. 224

Answered by anindyaadhikari13
9

\star\:\:\bf\large\underline\blue{Question:-}

  • If x = 9 + 4 \sqrt{5} find the value of  {x}^{2}  +  \frac{1}{ {x}^{2} }

\star\:\:\bf\large\underline\blue{Solution:-}

x = 9 + 4 \sqrt{5}

 \implies  \frac{1}{x}  =  \frac{1}{9 + 4 \sqrt{5} }

 =  \frac{1}{9 + 4 \sqrt{5} }  \times  \frac{9 - 4 \sqrt{5} }{9 - 4 \sqrt{5} }

 =  \frac{9 - 4 \sqrt{5} }{ {(9)}^{2} -  {(4 \sqrt{5}) }^{2}  }

 =  \frac{9 - 4 \sqrt{5} }{81 - 80}

 =  \frac{9 - 4 \sqrt{5} }{1}

 = 9 - 4 \sqrt{5}

Now,

x +  \frac{1}{x}  = 9 + \cancel{ 4 \sqrt{5} } + 9 -  \cancel{4 \sqrt{5} }

 \implies x +  \frac{1}{x}  = 18

Now, squaring both side, we get,

 {(x +  \frac{1}{x} )}^{2}  = 81

 \implies  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2  \times  \cancel{x} \times \cancel{x} = 81

 \implies  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 81

 \implies  {x}^{2}  +  \frac{1}{ {x}^{2} }   = 79

\star\:\:\bf\large\underline\blue{Answer:-}

  •  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 79
Similar questions